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Abstract
Stingless bees (Hymenoptera, Meliponini) are a large and diverse group including 59 extant groups, repre-
senting the main pollinators of Amazon forests. Among those, Trigona is one of the largest endemic genera of 
Neotropical Meliponini. In this work, we updated the molecular phylogeny of Trigona proposed by Rasmus-
sen and Camargo (2008), including data from 59 new specimens collected in 2020 in the forests of northern 
Peru, through a multigene phylogenetic approach combining sequences from four gene fragments (16S, 
ArgK, EF-1a, opsin). Our results confirmed the monophyly of Trigona and of all proposed subgenera, except 
Aphaneura. In addition, most Trigona species-groups resulted monophyletic but the ‘spinipes’ and ‘pallens’ 
groups appeared paraphyletic and polyphyletic, respectively. Moreover, the cohesion of the “fulviventris” spe-
cies group was hindered by the inclusion of T. williana (previously included in the “pallens” group) within this 
clade. Finally, we provided further evidence for a subdivision into two (geographically) distinct clades within 
T. guianae in northern Peruvian Amazon, which highlighted the importance of Neotropical biogeographical 
barriers in Meliponini divergence and evolution. Finally, to avoid misidentifications of Trigona specimens, the 
need for a robust taxonomic revision based on a cladistic approach of the whole genus is discussed.
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Introduction

Stingless bees (Hymenoptera, Meliponini) are major pollinators in tropical forests 
(Roubik 1989) with about 623 species belonging to 59 extant and fossil groups (con-
sidered as genera, subgenera or synonymized depending on the classification) (Engel 
et al. 2023). Meliponini are distributed throughout the tropical and subtropical areas 
of the Afrotropical, Australasian, Indo-Malayan and Neotropical Regions, exhibit-
ing the highest diversity in the New World Amazonian rainforests (Michener 1978; 
Roubik 1993; Michener 2007). Currently, 26 extant genera are considered endemic 
to the New World (Engel et al. 2023). Among these, Trigona Jurine, 1807 is exclusive 
to the Neotropics and is one of the largest genera of stingless bees (Michener 2007; 
Rasmussen and Cameron 2007). Recent molecular phylogenetic data confirmed the 
monophyly of the New World species of Trigona, a genus with 32 currently considered 
valid species (Camargo et al. 2013; Costa et al. 2003; Rasmussen and Cameron 2007; 
Rasmussen and Camargo 2008). Nine species-groups have been recognized based on 
morphological, ecological and distributional data, and largely supported by genetic 
analyses (Rasmussen and Camargo 2008). More recently, seven of these species-groups 
were elevated to subgenera of Trigona (Engel 2021) [i.e., ‘cilipes’ as Aphaneuropsis 
Engel, 2021; ‘fulviventris’ as Koilotrigona Engel, 2021; ‘crassipes’ as Necrotrigona Engel, 
2021; ‘pallens’ as Aphaneura Gray, 1832; ‘dimidiata’ as Dichrotrigona Engel, 2021; 
‘fuscipennis’ as Ktinotrofia Engel, 2021; ‘recursa’ as Nostotrigona Engel, 2021], with the 
remaining two groups, ‘amalthea’ and ‘spinipes’ forming the subgenus Trigona s. str. 
Jurine, 1807.

This group of bees, characterized by small to large workers (5.5–11 mm), shows a 
variety of defense behaviors and nesting habits (i.e. nests are built on branches of plants 
or walls, in anthills or underground; Costa et al. 2004), as well as different foraging 
ecologies, from pollen and nectar gatherers (Fig. 1) to obligated necrophages (i.e., 
Trigona crassipes Fabricius, 1793, T. hypogea Silvestri, 1902 and T. necrophaga Camargo 
& Roubik, 1991; Roubik 1982; Camargo and Roubik 1991).

About 22 species of Trigona have been reported in Peru (Rasmussen and Gonzalez 
2009; Camargo et al. 2013; Sánchez Sandoval et al. 2015; Castillo-Carrillo et al. 2016; 
Rasmussen and Delgado 2020), but the overall number is likely underestimated be-
cause many forested areas of the country remain unexplored.

Recently, several Trigona specimens dwelling in humid and seasonally dry forests of 
northern Peru (in San Martin and Piura regions) were identified through an integrative 
taxonomy approach, i.e., considering both morphology and COI barcoding (Marconi 
et al. 2022). As expected, the COI-based reconstructed phylogeny was mostly unre-
solved at deep nodes. In addition, the newly collected Peruvian specimens ascribed to 
T. fulviventris Guerin-Meneville, 1845 and T. guianae Cockerell, 1912 were split into 
four distinct clades, two for each species (named provisionally as ‘A’ and ‘B’ clades in 
both cases). The same phylogenetic analysis also detected two lineages that were un-
related to other identified species, which were provisionally attributed to T. sp. 1 and 
T. sp. 2, respectively (Marconi et al. 2022).
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In this work we conducted a multigene phylogenetic analysis of the Neotropi-
cal genus Trigona by integrating novel molecular data of four genes obtained from 
northern Peruvian specimens (Marconi et al. 2022) with a previously published dataset 
(Rasmussen and Camargo 2008). By updating the current phylogeny, we aimed to 
clarify the taxonomic issues emerged in our previous work (Marconi et al. 2022) and 
further validate the currently recognized species-groups within Trigona (Rasmussen 
and Camargo 2008) and the recently proposed subgenera (Engel 2021).

Methods

59 specimens of Trigona were collected in 2020 in five Northern Peruvian forests, 
all located east of Andes except Mangamanguilla [Juliampampa (JP) (800–110 m 
a.s.l. and -6°26'3.5556"N, -76°19'47.5896"E), Pabloyacu (PY) (950–1200 m a.s.l. 
and -6°4'6.3984"N, -76°56'24.8388"E), Pongo de Cainarachy (POA) (150–550 m 
a.s.l. and -6°21'22.608"N, -76°17'3.174"E), Utcurarca (UT) (250–550 m a.s.l. and 
-6°39'43.7616"N, -76°17'0.438"E) and Mangamanguilla (MA) (140–450 m a.s.l. 
and -5°18'46.5228"N, -79°51'51.084"E)] and tentatively assigned through an inte-
grative taxonomic approach (i.e. combining morphology and COI barcoding, after a 
‘salting-out’ DNA extraction from one middle leg) to ten different species (Marconi 
et al. 2022). PCR was conducted to amplify gene fragments of mitochondrial 16S 
rRNA (16S), nuclear long-wavelength rhodopsin copy 1 (opsin), elongation factor-
1a copy F2 (EF-1a), and arginine kinase (ArgK) using published primers (Rasmus-
sen and Cameron 2007; Rasmussen and Camargo 2008). The total reaction volume 
(25 μl) contained 0.5 pmol of each primer, 10 mM Tris-Cl, pH 8.3 and 50 mM KCl, 
1.5 mM MgCl2, 2.5 mM dNTPs, 2 μl of the DNA template and 1 unit of Taq DNA 
polymerase (Meridian). PCR cycling conditions consisted of an initial denaturation of 

Figure 1. Trigona cf. chanchamayoensis Schwarz, 1948 sucking nectar from a flower (Photo M. Marconi).
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3 min. at 94 °C followed by 35 cycles of 30 sec. at 94 °C, 30 sec. at 50 °C and 1 min. 
at 72 °C, and a final elongation step of 10 min. at 72 °C. Products were visualized on 
a 1% agarose gel stained using Midori Green Advance dye (Nippongenetics). PCR 
products were purified using the ExoSAP-IT PCR Product Cleanup Reagent (Applied 
Biosystem) and sent to the sequencing facility of Microsynth AG (Switzerland).

DNA sequences were edited and aligned with STADEN PACKAGE 2.0.0b11-
2016 (http://staden.sourceforge.net/). Sequences (including those of outgroup taxa) 
from Rasmussen and Camargo (2008) were downloaded and aligned with our data 
using MAFFT v1.4.0 (Katoh and Standley 2013) to produce comprehensive datasets. 
Phylogenetic analyses were conducted with Maximum Likelihood (ML) and Bayes-
ian Inference (BI) on both single gene and combined datasets. For both ML and BI 
approaches, ModelFinder (Kalyaanamoorthy et al. 2017) implemented in IQ-TREE 
v 1.6.12 (Nguyen et al. 2015) was used to find the best substitution model for each 
gene (= partition) according to the BIC criterion. ML analyses were performed with 
IQ-TREE v 1.6.12 (Nguyen et al. 2015) setting 2000 replicates to estimate node sup-
ports with ultrafast bootstrap (UFBboot2; Hoang et al. 2018). MRBAYES v3.2.7a 
(Ronquist et al. 2012) was used for Bayesian Inferences by running two MCMC and 
four chains for 10 million generations with a default (25%) burn-in. Trees were sam-
pled every 1000 generations, and convergence assessed with Tracer v1.6 (Rambaut et 
al. 2014). FIGTREE v1.3.1 (Rambaut and Drummond 2009) was used to inspect the 
obtained trees. Only clades with UFBoot (UFB) values ≥ 95% (Minh et al. 2013) and 
posterior probability (PP) values ≥ 0.95 (Erixon et al. 2003) were considered as strongly 
supported upon analyses. All voucher specimens were deposited in Estudios Amazon-
icos Biological Material Depositary Center (Tarapoto, Peru) (Marconi et al. 2022).

Results

We obtained 58 sequences of 16S (Genbank Acc. n° OR353456–OR353513), 26 of 
ArgK, 41 of EF-1a and 26 of opsin (Genbank Acc. n° OR393480–OR393571) from 
a total of 59 northern Peruvian Trigona specimens collected in 2020 (Marconi et al. 
2022). The combined dataset, including previously generated sequences of Trigona and 
outgroup species (Rasmussen and Camargo 2008), consisted of a total of 88 individu-
als (including 5 outgroups) with 2329 aligned positions composed by the four gene 
fragments: 485 base pairs (bp) of 16S, 592 bp of ArgK, 729 bp of EF-1a and 522 bp 
of opsin gene. ML and BY tree topologies largely overlapped (hence, BY topology only 
is shown; Fig. 2). The combined ML and BY analysis confirmed the monophyly of the 
genus Trigona (Fig. 2: PP = 1.00/UFB = 100) and the presence of two main distinct 
clades, one (PP = 1.00/UFB = 98) including members of the ‘amalthea’ + ‘spinipes’ 
(= Trigona s. str.), ‘fuscipennis’, (= Ktinotrofia) ‘recursa’ (= Nostotrigona) and ‘crassipes’ 
(= Necrotrigona) species groups (or subgenera) (PP = 1.00/UFB = 100), the other includ-
ing members of the ‘cilipes’ (= Aphaneuropsis), ‘pallens’ (= Aphaneura) and ‘fulviventris’ 
(= Koilotrigona) species groups (or subgenera) (Rasmussen and Camargo 2008; Engel 

http://staden.sourceforge.net/
http://www.ncbi.nlm.nih.gov/nuccore/OR353456
http://www.ncbi.nlm.nih.gov/nuccore/OR353513
http://www.ncbi.nlm.nih.gov/nuccore/OR393480
http://www.ncbi.nlm.nih.gov/nuccore/OR393571
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2021) (Fig. 2). Five out of the 8 Trigona species groups were recovered as monophyl-
etic: ‘amalthea’ (PP = 1.00/UFB = 99), ‘fuscipennis’ (PP = 1.00/UFB = 100), ‘recursa’ 
(also including T. sp. 1; PP = 1.00/UFB = 98), ‘crassipes’ (PP = 1.00/UFB = 98), ‘cilipes’ 
(PP = 1.00/UFB = 100). The ‘spinipes’ group appeared paraphyletic since it was split 
into two distinct, though poorly supported clades (Fig. 2). One included T. spinipes, 
T. hyalinata, T. corvina and T. amazonensis (‘spinipes’ 1; PP = 0.80/UFB = 94), whereas 
the other grouped T. nigerrima and T. dallatorreana (= T. sp. 2) (‘spinipes’ 2; PP = 0.93/
UFB = 71). However, all ‘spinipes’ members clustered with those of ‘amalthea’, thus 
supporting the monophyly (PP = 1.00/UFB = 100) of the subgenus T. (Trigona s. str.) 
sensu Engel 2021. T. williana did not cluster within the ‘pallens’ group, but was geneti-
cally closer to members of the ‘fulviventris’ group (= Koilotrigona). However, its place-
ment within the ‘fulviventris’ group or Koilotrigona subgenus remains doubtful since 
it received a low Bayesian support (PP = 0.52; Fig. 2). Hence, the ‘pallens’ group and 
the subgenus Aphaneura Gray 1832 (Engel 2021) are tenable only if T. williana is ex-
cluded and placed in a different group/subgenus, still to be defined. Finally, as already 
reported (Marconi et al. 2022), Peruvian specimens of T. guianae were subdivided into 
two well-supported and distinct clades (A and B) (Fig. 2), whereas those ascribed to 
T. fulviventris were included in the same clade (A+B; see Marconi et al. 2022).

Discussion

We here built upon the molecular phylogeny of the Neotropical genus Trigona 
(Rasmussen and Camargo 2008) by adding genetic data from newly collected speci-
mens in northern Peruvian forests (Marconi et al. 2022).

We confirmed the monophyly of the Neotropical genus Trigona and of all proposed 
subgenera, except for Aphaneura Gray, 1832 (Engel 2021). In addition, most Trigona 
species-groups were found to be monophyletic (Fig. 2). However, as already observed 
(Rasmussen and Camargo 2008), the ‘spinipes’ and ‘pallens’ species groups were para-
phyletic and polyphyletic, respectively (Fig. 2). Our results support combining mem-
bers of the ‘amalthea’ and ‘spinipes’ groups into the proposed subgenus T. (Trigona s. 
str.). However, the closely related T. (Trigona) dallatorreana (= T. sp. 2; Marconi et al. 
2022) and T. (Trigona) nigerrima should be ascribed to a different species-group (pro-
visionally named ‘spinipes’ 2 in Fig. 2). As previously mentioned, the ‘pallens’ group 
(= Aphaneura) as usually recognized is polyphyletic due to the large genetic distance 
of T. williana from all other members of this group/subgenus. In fact, T. williana is 
similar only in coloration to members of the ‘pallens’ group and differs in the shape of 
metasoma and metatibiae (F.F. De Oliveira, pers. comm.). The placement of T. wil-
liana within the ‘fulviventris’ group is also doubtful as it differs in many morphologi-
cal and biological features from other members of the group. Its true placement will 
require further investigation. In general, since some taxonomic issues affect the ‘pallens’ 
group (e.g., the types of both T. muzoensis Schwarz, 1948 and T. ferricauda Cockerell, 
1917 should be re-examined to exclude possible synonymies), we cannot rule out that 
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Figure 2. Trigona Bayesian phylogenetic tree topology estimated from combined sequence data from 
four gene fragments (16S, ArgK, EF-1a, opsin). Posterior probability and ultra-fast bootstrap values (BY - 
PP/ML - UFB) are shown at deepest nodes only. Color marks are assigned to tips leading to the 59 north-
ern Peruvian specimens belonging to Trigona species, whose taxonomic identification and geographic 
origin are reported in detail in table 1 of Marconi et al. 2022.
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our specimens, formerly recognized through the integrative taxonomic approach as 
T. muzoensis (Marconi et al. 2022), could be instead ascribed to T. chanchamayoensis 
Schwarz, 1948 - occurring in Peru east of Andes (type locality: San Ramon, Valle de 
Chanchamayo, Peru) - or to T. pallens Fabricius, 1798. In fact, the specimens mor-
phologically identified by Rasmussen and Camargo (2008) as T. chanchamayoensis and 
T. pallens (i.e., chanc 016 and pall 061; Fig. 2) are placed in two distinct clades includ-
ing two separate groups of individuals previously identified as T. muzoensis (Marconi et 
al. 2022), respectively (Fig. 2). When these northern Peruvian specimens were identi-
fied in BoldSystems (www.boldsystems.org) (Marconi et al. 2022), they received ID 
scores ranging 96.43 (POA) - 98.46% (e.g., JP007) for T. muzoensis, but did not match 
with the single T. chanchamayoensis available in BoldSystems (from Brazil), nor with 
T. pallens, totally lacking COI data. Unfortunately, taxonomic keys to promptly dis-
tinguish morphologically all members of the ‘pallens’ group are also lacking. Similarly, 
doubts could be raised to our previous attribution of northern Peruvian specimens to 
T. cf. hypogea or T. cf. fuscipennis (Marconi et al. 2022), because these show a close 
(although scarcely supported) phylogenetic relatedness to two species identified by 
Rasmussen and Camargo (2008), i.e., T. crassipes (crassi 060) and T. albipennis (albi 
168), respectively (Fig. 2). However, for these two species as well, data are lacking in 
BoldSystems, nor valuable keys of distinctive morphological characters are available for 
‘crassipes’ and ‘fuscipennis’ groups. In general, the absence of published dichotomous 
keys based on reliable diagnostic morphological characters and cladistic approaches 
integrating extensive genetic (COI or other marker) datasets aimed to define species 
boundaries, still hinder the correct identification of stingless bee species (see also, 
Marconi et al. 2022). These data deficiencies are likely to generate conflicts in Trigona 
identification (as, in this case, with those of Rasmussen and Camargo 2008) and favor 
the description of new species without truthfully considering their morphological and 
genetic internal cohesion, as well as their distinction from other (sibling) taxa.

We also confirmed a genetic subdivision within T. guianae into two putatively dis-
tinct taxonomic and/or geographic units, possibly originated by limited gene flow due 
to biogeographic barriers in the Neotropics (Marconi et al. 2022). Indeed, comparative 
analysis of metatarsi of T. guianae (Clade A) and T. guianae (Clade B) revealed mor-
phological differences at the retrodorsal margin and distal angle (unpublished data). 
Further data will allow establishing if T. guianae (Clade B) could be ascribed to a novel 
species endemic to Pabloyacu, or to one of the approximately 28 novel species await-
ing description (Rasmussen and Camargo 2008). On the other hand, the combined 
molecular dataset did not support the split into two distinct entities in T. fulviventris, 
as previously suggested based on COI marker only (Marconi et al. 2022). However, 
a recent morphological analysis showed that T. cf. fulviventris (Clade A) has a nar-
row subtriangular metatibia, whereas T. cf. fulviventris (Clade B) (MA6) has a broad, 
“drop-like” shape (unpublished data). Additional specimens will be examined, both 
genetically and morphologically, to clarify such issues.

Concerning the two previously unidentified Trigona species (Marconi et al. 2022), 
as reported above we confirm that T. sp. 2 is T. dallatorreana, whereas T. sp. 1 seems to 
be related to T. recursa, although its taxonomic relationships need further examination.
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Novel genetic/genomic data from populations sampled across the entire geograph-
ic ranges of all of the Trigona species groups will shed light on the phylogenetic rela-
tionships among members of this large genus of Neotropical stingless bees. Further 
morphological work is also needed to produce and/or refine taxonomic keys and accu-
rately revise the taxonomy of this speciose genus. Such an effort would not only resolve 
some taxonomic issues within this large genus of stingless bees, but also enhance our 
understanding of the role of Neotropical biogeographic barriers in the evolution of this 
main group of pollinators of the Amazon forests.
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