
Limited phylogeographic structure in a flightless, 
Appalachian chalcidoid wasp, Dipara trilineata 
(Yoshimoto) (Hymenoptera, Diparidae), with 

reassessment of the male of the species

Michael S. Caterino1, Nathan C. Arey2

1 Department of Plant and Environmental Sciences, Clemson University, Clemson, SC 29634, USA 2 Depart-
ment of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN 37996, USA

Corresponding author: Michael S. Caterino (mcateri@clemson.edu)

Academic editor: Ankita Gupta  |  Received 1 November 2023  |  Accepted 7 December 2023  |  Published 19 December 2023

https://zoobank.org/792C4DBB-2F49-4724-8928-201BBE945797

Citation: Caterino MS, Arey NC (2023) Limited phylogeographic structure in a flightless, Appalachian chalcidoid 
wasp, Dipara trilineata (Yoshimoto) (Hymenoptera, Diparidae), with reassessment of the male of the species. Journal 
of Hymenoptera Research 96: 1061–1072. https://doi.org/10.3897/jhr.96.115001

Abstract
Dipara trilineata (Diparidae) is a widespread eastern North American parasitoid with apterous females 
and winged males. Despite its seemingly limited dispersal capabilities, phylogeographic analysis over 
southern Appalachia reveals little structure, with only limited population level isolation. DNA barcoding 
surveys also definitively associate the male of the species, which had previously been misattributed, and a 
description of the correctly associated male is provided.
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Introduction

Dipara Walker, 1833 is a member of the Diparidae, a globally distributed family of about 
130 species of Chalcidoidea (Desjardins 2007), recently elevated to family status from a 
subfamily of Pteromalidae (Burks et al. 2022). Among North American Chalcidoidea, 
Dipara are unusual with females that are flightless and ant-like in morphology. There 
is little literature on Dipara biology. For several years, Diparinae were thought solely to 
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parasitize soil dwelling Curculionidae (Coleoptera) based on the first documented host 
record in 1988 (Bouček 1988). However, several species have been successfully reared 
from mantid egg cases and tsetse fly puparia (Desjardins 2007). The host range of Di-
paridae needs further research to gain a better picture of parasitoid-host relationships. 
There are presently three native species of the genus Dipara known from North Amer-
ica (Desjardins 2007), D. canadensis Hedqvist, 1969, D. nigriceps (Ashmead, 1904), 
and D. trilineata (Yoshimoto, 1977). The European D. petiolata Walker, 1833, has also 
apparently been introduced to the region (Garrido Torres and Nieves-Aldrey 1999; 
Wiśniowski and Jirak-Leszczyńska 2021), though we aren’t aware of specific records.

Dipara trilineata is the most common species of Dipara in the eastern United States. 
Described from Kentucky, there are also published records from Missouri, North Caro-
lina, Florida, Arkansas, Texas, Oklahoma, Tennessee, and the District of Columbia (sev-
eral of these under the now synonymous Trimicrops bilineatus Yoshimoto 1977 (Yoshi-
moto 1977; Bouček 1993; Desjardins 2007), and online photographic records from 
Louisiana and Quebec (based on identifiable photographic vouchers on BugGuide.net). 
This is a remarkably broad range for a species whose females are wingless and flightless. 
Finding the species to be abundant in leaf litter samples from the higher elevations of 
the southern Appalachian mountains, which function as a series of sky islands for many 
inhabitants (Browne and Ferree 2007; Hedin et al. 2015; Caterino and Recuero 2023), 
it seemed likely that D. trilineata would exhibit considerable genetic structure, and po-
tentially cryptic species over its range. Using mitochondrial, barcode-region sequences 
from numerous southern Appalachian populations, we examine this hypothesis here.

We also address a mistaken attribution of males to this species. We have associ-
ated three male specimens from multiple populations unambiguously with females of 
Dipara trilineata through DNA barcodes, and find them to differ significantly from 
males originally described by Yoshimoto (1977). We rectify this error, and provide a 
new description of male morphology.

Methods

New data for this paper include 69 Dipara trilineata COI sequences, generated as part 
of an ‘all-arthropods’ metabarcoding study on the fauna of leaf litter in the high Appa-
lachians, plus a small selection of other Chalcidoidea outgroups for rooting. Specimens 
of D. trilineata were identified using keys in Yoshimoto (1977). Descriptions of all de-
scribed Diparidae with flightless females occurring in North America were carefully 
compared to our specimens. Significant character conflicts are found for all but D. tri-
lineata (and its well-justified synonym D. bilineatus (Yoshimoto)), and the type and oth-
er known localities for these names correspond closely to the species as we treat it here. 
In preliminary analyses we included selected ‘Diparidae’ specimens from the Barcoding 
of Life Database (BoLD). However, finding that none of these affected the monophyly 
or polarity of the D. trilineata topology, we conducted most analyses without these.

Sequenced specimens came from our own recent collections (sampling map shown 
in Fig. 1), where we sifted leaf litter at sites ranging in elevation from 1300–2000 m 
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(~4500–6600 ft). The highest elevation sites (> 1500 m) were dominated by a canopy 
of red spruce (Picea rubens) and Fraser fir (Abies fraseri), with a litter layer composed 
mainly of their shed foliage. Lower localities were associated with more typical south-
eastern deciduous forest, with litters of oak, maple, birch, and Rhododendron. Litter 
samples were Berlese extracted until dry, and all specimens were collected into and 
preserved in 100% ethanol until extraction.

Prior to extraction, each specimen was imaged (images available at https://www.
flickr.com/search/?user_id=183480085%40N02&desc&text=Dipara&view_all=1). 
Abdomens were subsequently punctured for digestion, and moved to a 96-well plate. 
Tissues were digested with lysis buffer and proteinase K (Omega BioTek, Norcross, 
GA), the liquid fraction then removed to a new plate and extracted using Omega 
BioTek’s MagBind HDQ Blood and Tissue kit, eluting with 150 μL elution buffer. 
Voucher specimens were retained, labelled, assigned unique identifiers, and deposited 
in the Clemson University Arthropod Collection.

The data set includes sequences produced by Illumina and Nanopore methods. In 
both cases, mini- (421 bp) barcodes were amplified from the mitochondrial COI gene 
using the primers BF2-BR2 (GCHCCHGAYATRGCHTTYCC & TCDGGRT-
GNCCRAARAAYCA; Elbrecht and Leese 2017), corresponding to the downstream 
two-thirds of the standard barcoding region. Each PCR reaction was tagged with a 
unique combination of 9 bp indexes (Meier et al. 2016). All PCRs were conducted 
in 12.5 μL volumes (5.6 μL water, 1.25 μL Taq buffer, 1.25 μL dNTP mix [2.5 mM 
each], 0.4 μL MgCl [50 mM], 1.5 μL each primer, 0.05 μL Platinum Taq polymerase, 
1 μL DNA template, with a 95 °C initial denaturation for 5 minutes, followed by 35 
cycles of 94 °C (30 sec), 50 °C (30 sec), 72 °C (30 sec), and a 5 minute 72 °C final 
extension on an Eppendorf Gradient Mastercycler.

PCR products were combined and purified using Omega Bio-Tek’s Mag-Bind To-
tal Pure NGS Kit, in a ratio of 0.7:1 (enriching for fragments >300 bp). Illumina 
adapters and sequencing primers were ligated to PCR products using New England 
BioLab’s Blunt/TA Ligase Master Mix. Resulting libraries were purified using Mag-
Bind Total Pure NGS, quantified using a Qubit fluorometer, and sequenced on an Il-
lumina MiSeq using a v.3 2 × 300 paired-end kit. For Nanopore MinION sequencing, 
libraries were prepared using the ligation sequencing kit LSK-112 (Oxford Nanopore 
Technologies, Oxford, UK), and loaded onto a v10.4 flowcell.

Illumina reads were processed with bbtools software package (https://jgi.doe.gov/
data-and-tools/bbtools/; v38.87; Bushnell et al. 2017), trimming adapters, removing 
PhiX control reads, merging paired-end reads, filtering reads for the correct size, re-
moving reads with quality score < 30, clustering sequences by similarity allowing 5 
mismatches (~1%), and generating a final matrix in FASTA format. Nanopore reads 
were basecalled using the ‘super-accurate’ algorithm of Guppy (v6.1.2) running on 
Clemson’s Palmetto cluster, then demultiplexed using ONTbarcoder v0.1.9 (Srivath-
san et al. 2021), with minimum coverage set at 5. FASTA files from all sequencing runs 
were combined and aligned with the online version of Mafft v7 (Katoh et al. 2017) 
using the auto strategy. All barcode sequences have been deposited in GenBank, with 
accession #s listed in Suppl. material 1.

https://www.flickr.com/search/?user_id=183480085@N02&desc&text=Dipara&view_all=1
https://www.flickr.com/search/?user_id=183480085@N02&desc&text=Dipara&view_all=1
https://jgi.doe.gov/data-and-tools/bbtools/
https://jgi.doe.gov/data-and-tools/bbtools/
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Figure 1. Map of all localities represented by COI sequences in the present study. Colors refer to those 
in trees in Figs 2, 3.

We produced a phylogeny using W-IQ-Tree (Nguyen et al. 2015; Trifinopoulos et 
al. 2016) under maximum likelihood criteria, applying a GTR+gamma model, with 
empirical base frequencies. Branch support was estimated using 10000 replicates of ul-
trafast bootstrapping (Minh et al. 2013). To assess relationships among haplotypes un-
der a population genetic framework, a TCS haplotype network (Clement et al. 2000) 
was constructed using Popart (Leigh and Bryant 2015).

Results

Phylogenetic analyses that included a broader selection of Diparidae (not shown) from 
BOLD invariably resolved southern Appalachian D. trilineata as monophyletic, with 
no other available sequences very closely related. Sequences unidentified beyond ‘Di-
paridae’ from Thailand and Western Australia appeared more closely related to D. tri-
lineata than did sequences of the Palaeartic Dipara petiolata or what appears (from a 
voucher photo in the BOLD database) to represent D. canadensis (from Virginia, USA).

Within D. trilineata, 69 individuals resolved into 35 distinct haplotypes. Divergences 
among them were remarkably low, with most less than 2% (uncorrected). The largest diver-
gences were between a single individual from Brasstown Bald, Georgia (BBld.A.048) and 
most other sequences, at 4–6%. Comparisons to a couple other more divergent and well 
supported lineages (those from the Black Mts. in North Carolina and those from White-
top Mt. in southwestern Virginia) were intermediate, ranging from 2–3.6%. Phylogenetic 
resolution was low and mostly weakly resolved (see Fig. 2). The deeply divergent individual 
from Brasstown Bald in northeastern Georgia was resolved as the sister to all other popula-
tions, although it differs in no obvious morphological characteristics. Among the latter, a 
single individual from a lower elevation locality in south-central North Carolina (Green 
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Figure 2. Maximum likelihood phylogeny of Dipara trilineata individuals, with locality abbreviations as 
in Suppl. material 1, and colors of OTUs keyed to localities shown in Fig. 1.
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River) was sister to the remainder. More northern populations (Roan Highlands, Big Bald, 
Black Mountains, Grandfather Mt., and Whitetop) were broadly paraphyletic with respect 
to populations southwest of the Asheville Depression. Populations in the latter region were 
resolved into a few moderately to weakly supported lineages (mostly from single localities: 
Mt. Kephart, Mt. Hardy), but relationships among most are unresolved.

The haplotype network (Fig. 3) uncovers little population level structuring. 
Although only a couple haplotypes are shared across populations (Black Mts. and Roan 
Highlands by one haplotype, Nantahala Mts. and Great Balsam Mts. by another), few 
populations form tight clusters, and haplotypes from some widely separated localities 
(e.g., Celo Knob in the northern Black Mts. and Rabun Cliffs in north Georgia) are 
quite closely related (differing in that case by only two mutations).

Three male specimens (fully winged, with long filiform antennae), representing 
three different populations, were resolved as identical to one or more females from their 
respective populations, and can be considered definitively associated. These specimens 
conflict in several characters with the descriptions and figures presented in Yoshimoto 
(1977), then described as the males of the now synonymous Trimicrops bilineatus. The 
clearest point of contrast is in the antennal flagellum, shown in fig. 25 of Yoshimoto 
(1977: p.1053) as moderately elongate, with evenly cylindrical flagellomeres with surfac-
es covered with short setae, described as “filiform, densely pubescent with a single short 
annellus”. In the specimens we attribute to D. trilineata (Fig. 4C–F) the antennae are 

Figure 3. Haplotype network from TCS analysis, with sizes of circles proportional to number of indi-
viduals with that haplotype, and colors of circles keyed to localities as shown in Fig. 1.
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much more slender, every flagellomere tapered basally and distally, and verticillate, with 
few very long setae borne in whorls (Fig. 4E). Yoshimoto also figures the wings in his Fig-
ure 8 (1977: p. 1050), showing the hind wing to be broadly rounded apically, while our 
D. trilineata has much narrower, apically subacute hind wings (Fig. 4F). Those are the 
only characters illustrated by Yoshimoto, but it is apparent that the described “allotype” 
male from the type locality represents a distinct species. The male he attributed to Dipara 
pedunculata (with antennae figured in Yoshimoto’s Fig. 27; 1977: p. 1053), now con-
sidered a synonym of D. canadensis, matches our D. trilineata males much better than it 
does D. canadensis (the male antenna of which is shown in his fig. 26: (1977: p. 1053). 
Heydon and Bouček (1992), when synonymizing D. pedunculata with D. canadensis, 
previously noted some inconsistencies between Yoshimoto’s (1977) description and fe-
male holotype. We suggest that the male presumed to represent Yoshimoto’s D. peduncu-
lata was a misidentified D. trilineata. Dipara pedunculata was described from Kentucky, 
well within the range of D. trilineata, so the two valid species must be sympatric there, 
and the original series of D. pedunculata a mix of D. canadensis and D. trilineata.

Comparing our confirmed males of D. trilineata directly to Yoshimoto’s (1977) 
description of D. pedunculata, we note several other points of difference, and provide 
a brief re-description here (with slightly updated terminology).

Male (Fig. 4C–F): Head, mesosoma, and metasoma fuscous; legs (except meso-
coxa), petiole, and bases of antennae yellowish, the antennae gradually darker from 3rd 
flagellar segment distad, mesocoxa also darker toward base; head almost hemispherical, 
very shallowly depressed above toruli, smooth and shining above, finely transversely re-
ticulate below toruli, with scattered setae throughout; eyes prominent, eye height slightly 
more than half lateral head height, coarsely faceted; ocellar triangle wide, individual 
ocelli oval; clypeus outlined by disconnected series of punctures, convex, apical mar-
gin evenly rounded; mandibles tridentate; antennae inserted in front of middle of eye, 
slightly above middle of frons, toruli approximately equally separated from each other as 
from inner edge of eye; scape cylindrical, slightly curved, almost as long as pedicel and 
flagellomeres 2 and 3 combined; pedicel short, expanded to slightly wider than scape 
at apex, flagellomeres narrow basally and apically (‘pedunculate’), but bulbous in basal 
half, tapered apically, with few (~6) long setae (about 1.5 times as long as flagellomere) 
inserted in an uneven series around bulbous base; entire antenna nearly as long as rest 
of body; neck transversely reticulate, bounded posteriorly by evenly curved, weakly im-
pressed collar; notauli subcrenulately impressed, curving to meet along finely and deeply 
impressed mesoscutum-scutellar suture, the mesoscutum polygonally microsculptured 
between; frenal groove of scutellum only weakly indicated, but frenum smoother than 
polygonally microsculptured scutellum; propodeum with coarsely raised reticulate mi-
crosculpture; anterior insertion of petiole slightly narrower than posterior insertion, 
petiole about 3 times as long as maximum width, with weak longitudinal carinae; 1st 
gastral segment nearly half entire gastral length, 2nd–5th gastral segments subequal in 
length; forewing widening only slightly beneath costal cell, widening more abruptly be-
yond, anterior margin bent slightly forward at this point; submarginal vein bearing two 
conspicuous dorsal setae; marginal vein more densely setose, the setae directed distad at 
about 45°, their maximum length about ¼ maximum wing width; postmarginal vein 
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Figure 4. Female (A, B) and male (C–F) Dipara trilineata (Yoshimoto).

weak, fading evenly beyond short stigmal vein, stigma slightly expanded, uncus poorly 
developed; wing with sublinear series of short setae in basal cell, bare briefly within spec-
ular area, densely and evenly setose beyond; setae of apical and posteroapical margins of 
wing long, nearly half maximum wing width; hind wing about three-fourths length of 
forewing, posterior margin rounded, widened slightly beyond midpoint, narrowed to 
subacute apex, setae along posterior margin longer than width of hindwing membrane.

Material examined (males): North Carolina, Yancey County, Mt. Mitchell State 
Park, Big Tom near summit (35.7799, -82.2596), 7-Sep-2021 (CUAC000135520); 
North Carolina, Swain County, Great Smoky Mountains National Park, Clingmans 
Dome (35.5589, -83.4983), 14-Sep-2021 (CUAC000157203); North Carolina, Mitch-
ell County, Roan High Bluff (36.0931, -82.1453), 15-Aug-2018 (CUAC000002974).

Other taxonomic remarks: No recent authors have addressed the mismatch in gen-
der of Dipara trilineatus (sic). Walker’s (1833) genus name would be feminine, appearing 
to be based on a Greek adverb used as a singular noun (S. Chatzimanolis, pers. comm.), 



Phylogeography of Dipara trilineata 1069

and virtually all usage from Walker’s onward has used feminine species names. It is unfor-
tunate that when synonymizing Trimicrops Keiffer with Dipara Walker, Desjardins (2007) 
did not properly amend ‘trilineatus’ to the singular feminine ending, but we do that here.

Discussion

Dipara trilineata is a remarkably widespread species for one having such seemingly 
limited dispersal capabilities. Our collections, along with reliable records from other 
sources reveal the species to cover much of the eastern US, extending from central Tex-
as into southeastern Canada. As to state records, the species was previously unreported 
for Mississippi, Indiana, Georgia, South Carolina, Virginia, and West Virginia (Fig. 5).

Even more surprising is the relatively limited degree of population structuring, at 
least over the range we sampled. Some geographic clustering is evident, and a number of 
populations exhibit haplotype monophyly, but the overall patterns exhibit only loose cor-
respondence with geography. One potential confounding factor is the relatively high hap-
lotype diversity, as would be expected for a species with large population sizes. This could 
slow coalescence and limit phylogenetic resolution even if populations are largely isolated. 
But based on available data, there are no indications that D. trilineata represents a cryptic 
species complex, despite its flightlessness. If additional individuals from the more divergent 
lineages (BBld.A.048 or NC_GreenRiver) showed comparable genetic difference, more 
systematic morphological comparisons may reveal subtle differences not yet apparent.

Figure 5. Total known distribution of Dipara trilineata, based on a combination of published, online, 
and newly contributed records.
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The lack of phylogeographic structuring may provide some indirect hints as to 
host breadth. Even though individual Dipara females may not themselves be capable 
of long-distance dispersal, it is worth suggesting the potential for dispersal in the larval 
stage by a more mobile, flying or ballooning host, which would serve to reduce effec-
tive isolation (as has been shown for Dryinidae parasitoids of leafhoppers; Mita et al. 
2012). Host records for Dipara to date include only non-mobile stages, eggs, larvae, 
and pupae (Desjardins 2007). But these already cover a considerable range, and more 
mobile hosts should not be ruled out.

As to potential host identities for Dipara trilineata, its general abundance over a 
wide range argues against any close host specificity. There are few other arthropod spe-
cies in eastern US leaf litter that have so wide a distribution, occurring in such a wide 
range of microhabitats, although perhaps some of the spider species do (Recuero et al. 
2023). Previous suggestions of weevil associations would not seem likely, at least not 
as a primary host, as weevils are poorly represented in our highest elevation samples. 
There are intriguing possibilities to better understand host/parasitoid relationships 
through metabarcoding approaches, such as detecting the DNA of a parasitoid as co-
amplifying with that of its host (Miller et al. 2021), and the Dipara system would be a 
promising one to explore such potential.
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