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Abstract
Artificial nesting resources, also known as trap nests, have proven to be an ideal method for monitoring 
cavity-nesting bees and wasps, their collected food resources, and natural enemies. Nowadays, trap nests 
are frequently used to assess responses to environmental and biodiversity changes based on multi-troph-
ic interaction networks. Here, we reconstructed quantitative trophic interaction networks of five apoid 
wasps (Trypoxylon clavicerum, Passaloecus corniger, Passaloecus gracilis, Psenulus fuscipennis, Isodontia mexi-
cana and two vespid wasp species (Ancistrocerus nigricornis, Microdynerus parvulus) using DNA barcoding. 
Sampling the nests during their construction period allowed us to give an accurate count and identifi-
cation of the provided food items. We recovered highly resolved bi- and tripartite networks including 
wasp-beetle larva, wasp-cricket, natural enemy-wasp-moth larva, natural enemy-wasp-spider, and natural 
enemy-wasp-aphid associations. The latter include aphid species that are known as agricultural and forest 
pests. Although the quantitative sampling of nests entails increased time costs, it enables not only high-
quality DNA barcoding but also to reconstruct quantitative interaction networks. Thus, our approach is a 
highly promising monitoring tool for gaining deeper knowledge on the ecology, habitat requirements and 
the impact of environmental and biodiversity change on cavity-nesting bees and wasps.
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Introduction

Bees and wasps play fundamental economic and ecological roles, e.g. as pollinators 
or to control other arthropod populations including agricultural pest species (Harris 
1994; Ollerton et al. 2006; Klein et al. 2007; Fornoff et al. 2023). However, due to 
diverse anthropogenic factors, bees and wasps are in decline (Senapathi et al. 2015; 
Hallmann et al. 2017; Trapp et al. 2017; Goulson 2019; Powney et al. 2019; Dicks et 
al. 2021; Zattara and Aizen 2021). Studying bee or wasp species interactions by means 
of artificial nesting sites (hereafter referred to as trap nests) is a standardized approach 
(Staab et al. 2018) to identify and assess environmental drivers associated with popula-
tion declines. This necessarily includes an in-depth view on trophic interactions, acting 
bottom-up or top-down on the respective populations, and should be more informative 
than analyzing co-occurring communities at sampling locations e.g., nesting sites only 
(Blanchet et al. 2020). Here, we investigate nests of cavity-nesting vespid and apoid 
wasp species by quantifying their collected food resources as larval provisions, and their 
natural enemies within a subset of nest cells, to reconstruct highly resolved quantitative 
multi-trophic interaction networks. The morphological identification of food resources 
provided to the larvae can be challenging, as insect taxonomist are rare (Hochkirch et al. 
2022) or food items can be morphologically unrecognizable, when only parts are left for 
determination (Fornoff et. al 2023). Thus, we applied DNA barcoding (Turčinavičienė 
et al. 2016) to overcome these difficulties. In addition, utilizing openable and resealable 
trap nests allows minimal invasive sampling, collecting fresh material for DNA barcod-
ing and a direct ecological observation of cavity-nesting wasps.

Material and methods

Sample collection

Samples were taken from trap nests set at three different sites in the close surroundings of 
the University of Hohenheim, Germany from May to August 2022 and 2023 at a weekly 
base (Suppl. material 5 and Suppl. material 4: table S13). Trap nests are designed to be 
easily openable and consist of several MDF (medium density fiberboard) boards with ten 
milled furrows each, covered with a removable acrylic glass, enabling a minimal invasive 
investigation of a respective nest. Each furrow represents one nest consisting of several 
nest cells (Fig. 1B–D). Furrows have a diameter of 2.0–9.0 mm to address different sized 
wasps (Suppl. material 2: table S7). During nest construction and provisioning, a sub-
set of the nest i.e., recently finished nest cells were randomly sampled. Particularly, the 
whole content of one or a maximum of two nest cells comprising the wasp larva as well 
as its food provision and potential natural enemies were sampled while leaving remain-
ing nest cells intact. Larvae and food provision were transferred into 100% pure ethanol 
using sterile forceps and subsequently stored at -20 °C until further processing. Sampling 
nest cells during nest construction allowed the collection of full-sized and freshly col-
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lected prey arthropods before being consumed by the larval wasp. Additionally, one reed 
stem, also part of the trap nests, was opened and sampled as described before. Please 
note, in rare cases sampling had to be done for fully constructed nests comprising signifi-
cantly older larval stages and thus, contained only a few prey individuals or prey remains.

Sample preparation and DNA barcoding

From 19 wasp nests, we sampled a total of 20 nest cells comprising 20 wasp larvae, 361 
prey individuals, and six natural enemies (individuals of the natural enemy Pronotalia 
sp. were not counted due to their high number). We separated prey morphotypes un-
der a microscope and selected one specimen per morphotype for the subsequent DNA 
extraction. Thus, a total of 60 individuals comprising selected prey specimens and 
wasp larvae were processed for DNA barcoding. We stored the remaining morphotype 
individuals as voucher specimens.

Genomic DNA (gDNA) was extracted using the nexttec™ 1-Step Tissue & Cells 
Isolation Kit following the manufactures’ protocol with an incubation at 56 °C for 
30 min. DNA samples were stored at -20 °C until further processing.

Polymerase chain reactions (PCR) targeting the cytochrome C oxidase I (COI) 
gene fragment were conducted with the established standard primer pairs HCO2198/
LCO1490 (Folmer et al. 1994) and LepF1/LepR1 (Hebert et al. 2003) (sequences 
in Suppl. material 1: table S1). PCR reactions were set up using the ROTI®Pol TagS 
Red-Mix in a total reaction volume of 25 µl with 4 or 2 µl template DNA for HCO/
LCO and Lepf1/LepR1 reactions respectively (see Suppl. material 1: tables S2, S3). 
The PCR conditions with HCO/LCO were set as bottom-up reaction starting with 
1 min at 94 °C, followed by 15 cycles of 1 min denaturation at 94 °C, 1 min annealing 
at 40 °C and 1 min elongation at 72 °C and 20 cycles with an annealing temperature 
of 45 °C and same elongation and denaturation temperatures and times subsequently. 
The final elongation was set for 5 min at 72 °C. LepF1/LepR1 conditions are included 
in the supplements (Suppl. material 1: table S5). PCR products were enzymatically pu-
rified using the Illustra Exoprostar 1-Step mix, following manufactures protocols and 
afterwards sequenced on a Sanger-sequencing platform at Microsynth Seqlab GmbH 
Göttingen, Germany.

Resulting raw DNA sequences were manually edited using Geneious Prime 
2023.0.4 (https://www.geneious.com) and searched against the National Center for 
Biotechnology Information (NCBI) database using the Nucleotide collection (nt/nr) 
database of the Basic Local Alignment Search Tool BLAST with the following option: 
highly similar sequences (megablast) (Altschul et al. 1990; Camacho et al. 2009).

Data analysis

The visualization of interactions between the wasp species, their prey and their natural 
enemies was carried out using R version 4.3.1 (R Core Team 2023) with the R package 
“bipartite” (Dormann et al. 2008).

https://www.geneious.com
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Results

We identified seven species of cavity-nesting wasps comprising one species of the apoid 
family Crabronidae (Trypoxylon clavicerum), two species of Pemphredonidae (Passaloecus 
corniger and Passaloecus gracilis), one species of Psenidae (Psenulus fuscipennis), one spe-
cies of Sphecidae (Isodontia mexicana) and, two species of vespid wasps belonging to the 

Figure 1. Nesting site and sample collection procedure: A example of a trap nest placed in the Botanical 
Garden of the University of Hohenheim, Stuttgart, Germany B, C nests of Passaloecus gracilis and Isodon-
tia mexicana. One nest comprises several nest cells, which are separated by a given nesting material e.g. 
silky membran (B) or dry grass fragments (C) E morphotyped aphids F morphotyped spiders.
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family Vespidae (Ancistrocerus nigricornis and Microdynerus parvulus) (Suppl. material 
2: table S6). The latter two species provisioned their larvae with two different species of 
Lepidoptera (larvae) (Suppl. material 3: table S11) and one species of Coleoptera (lar-
vae) (Suppl. material 3: table S12), respectively. The spider-hunting wasp T. clavicerum 
collected nine different species of Araneae across three different families. Six species of 
the family Linyphiidae, one species of Araneidae and two species of Tetragnathidae were 
identified (Suppl. material 3: table S8). The average number of collected prey individuals 
in T. clavicerum nests was 32.25 spiders per nest cell (n = 4, SD = 15.52). Please note, in 
case only prey remains were available counting nest content was not feasible. The herbi-
vore-hunting wasps Passaloecus and Psenulus collected nine different species of Aphididae 
(Suppl. material 3: table S9). The cricket-hunting wasps Isodontia mexicana provided its 
larvae with two species of the genus Meconema (Tettigoniidae) (Suppl. material 3: table 
S10). Furthermore, four species of natural enemies were detected comprising one indi-
vidual of the parasitoid wasp Nematopodius sp., two of the cuckoo-wasp Trichrysis cyanea 
(P. corniger and T. clavicerum), more than 40 individuals of the chalcid wasp Pronotalia 
sp. (A. nigricornis) and two individuals of Pseudomalus auratus (P. gracilis).

Quantitative multi-trophic networks

The spider-hunting wasp T. clavicerum collected the most diverse set of different spe-
cies as larval food resources (Fig. 2A). Here, each investigated nest cell included at least 
two but typically three different spider species with varying composition between the 
nests. Nest cells of the aphid-hunting wasp P. gracilis were provided with an average 
number of 30 aphids (n = 3, SD = 1) comprising only one species: Aphis ruborum.

The aphid-hunter P. fuscipennis collected five different species of Aphididae, and 
most of the nest cells contained only a single species (Fig. 2B). The vespid wasp A. nig-
ricornis collected eleven Lepidoptera larvae in the investigated nest cell, comprising two 
different species: Argyresthia pruniella and Hedya pruniana. The cricket-hunter I. mexi-
cana provided eight individuals of the genus Meconema, in one nest cell comprising 
seven of the species Meconema meridionale and one Meconema thalassinum (Fig. 2C).

Regarding P. corniger, nests were sampled several days after provisioning causing 
prey items to be partly consumed by the larva. Thus, counting collected aphids was 
not feasible. However, three different species of Aphididae were identified in the larval 
provisions (Fig. 2B). Furthermore, counting of prey individuals was not feasible for the 
vespid wasp M. parvulus. Here, we identified one larva of the weevil Tychius picirostris 
provided as a larval provision.

Discussion

Quantitative multi-trophic interaction networks provide valuable insights into the 
feeding ecology of diverse cavity-nesting Hymenoptera and enable conclusions to 
be drawn about their responses to environmental and biodiversity changes (Staab et 
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Figure 2. Tri-trophic interaction networks of the studied vespid and apoid wasp species comprising iden-
tified prey species and natural enemies. Interaction networks were conducted for the A spider-hunting 
apoid wasp T. clavicerum B aphid-hunting apoid wasp species P. corniger, P. gracilis and P. fuscipennis and 
C Lepidoptera-hunting vespid wasp A. nigricornis, cricket-hunting apoid wasps I. mexicana and weevil-
hunting vespid wasp M. parvulus. Yellow boxes represent the nest cell and the respective wasp larva, blue 
boxes the natural enemies and green boxes the prey species and the number of prey individuals per species 
per nest cell. Boxes with no number represent one individual only. The natural enemy Pronotalia sp. was 
not counted due to a high and randomely distributed number of individuals in the nest cell (> 40). Con-
nections of nests and prey species are marked with grey bars.
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al. 2018; Fornoff et al. 2023). The here applied minimally-invasive approach allows 
us to gain comprehensive insides into the larval food provisions of apoid and vespid 
wasps and increases our knowledge about important feeding links. A major advan-
tage and novelty of the method used here is the quantification of the prey specimens. 
Linking the quantity and identity of all interaction partners allows e.g., to study 
individual-based interactions, observe direct feeding links or, interpret the depend-
ence of higher trophic levels on the levels below (Fornoff et al. 2023). Furthermore, 
this approach facilitates the extraction of high quality and quantity gDNA for sub-
sequent DNA barcoding, given prey items are sampled directly after provisioning. 
Data analyses requiring higher-quality gDNA also become possible e.g., genetic gut 
content analyses of prey arthropods. The here presented approach requires a mini-
mum of lab expertise and equipment and thus, might be also interesting for biolo-
gist with little or no molecular expertise. In our study, the procedure from sorting 
morphotypes of prey items to laboratory work to receiving the raw DNA sequence 
required 15 to 20 minutes hands-on time per sample. However, apart from sorting 
morphotypes several samples can be processed in the laboratory at the same time. 
Thus, a common sample size consisting of 96 samples can be prepared for sequenc-
ing within one day. Sequencing can be outsourced and requires around 24 hours 
depending on the sequencing company.

To the best of our knowledge, our approach further allowed the identification of 
so far unknown or unpublished feeding links: The spider-hunting apoid wasp T. clav-
icerum is known to provide its larvae with spiders of the families Araneidae, Linyphi-
idae, Tetragnathidae and Dictynidae (Fornoff et al. 2023). Here we expand the family-
associated species list given by Fornoff et al. (2023) by five species namely Hysosinga 
pygmaea, Linyphia hortensis, Microlinyphia pusilla, Neriena clathrata and Tenuiphantes 
tenuis. Furthermore, we newly found Brachycaudus divaricatae and Pterocomma pilosum 
as host species for the aphid-hunting wasp P. fuscipennis as well as Aphis frangulae gos-
sypii and Eucallipterus tiliae for P. corniger. The vespid wasp A. nigricornis, known to 
provide Lepidoptera larvae as larval provision was found to provide larvae of the cherry 
fruit moth Argyresthia pruniella (Argyresthiidae) and the plum tortrix Hedya pruniana 
(Tortricidae). Interestingly, several of the here identified prey species are known as 
agricultural pests e.g., A. ruborum (collected by P. gracilis), a potential pest of Rubus 
and Fragaria (Alford 2014; Riddick et al. 2019); C. cedri (collected by P. fuscipennis) 
a pest on Cedrus species (Ji et al. 2021); and A. pruniella and H. pruniana (collected 
by A. nigricornis), both mainly feeding on trees of the genus Prunus (Řezáč 1964). 
Especially, A. pruniella is known to cause high levels of damage to Prunus trees, in addi-
tion to acting as pest on other orchard crops (Řezáč 1964). Nest cells belonging to the 
apoid wasps P. gracilis and P. fuscipennis were mostly found to be filled exclusively with 
aphids belonging to one species, which probably reflects their agglomerations on the 
host plant. Given the potential pest risk of some of these aphids, a targeted installation 
of trap nests might be helpful to control their abundances.

In summary, the combination of standardized trap nest monitoring and DNA 
barcoding is a useful approach to comprehensively investigate the biology of cavity-
nesting Hymenoptera and their interaction partners.
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