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Abstract
Detailed social and phenological data collected from nesting aggregations exist for relatively few sweat bee 
species because nesting aggregations are rarely found in large numbers, even when local populations are 
highly abundant. This limits researchers’ abilities to assess the social status of many species, which in turn, 
limits our ability to trace the sequence of evolutionary steps between alternative social states. To address 
this problem, we demonstrate the utility of rehydrated, pinned specimens from pan trap and netting 
collections for generating inferences about the phenology and social status of a well-studied sweat bee 
species, Lasioglossum (Dialictus) laevissimum. A detailed comparison of phenology and reproductive traits, 
between pinned specimens and those in a previous nesting study, produced similar results for bivoltine 
foraging activity and eusocial colony organization typical in this species. We then used pinned specimens 
from monitoring studies to describe, for the first time, the foraging phenology and social behaviour of 
two additional Dialictus species, L. hitchensi and L. ellisiae. Both L. hitchensi and L. ellisiae each exhibited 
two peaks in abundance during their breeding seasons, indicating two periods of foraging activity, which 
correspond to provisioning of spring and summer broods. Differences in body size, wear, and ovarian 
development of spring and summer females indicated that L. hitchensi is most likely eusocial, while 
L. ellisiae is either solitary or communal. This study demonstrates that analyses of specimens obtained 
from flower and pan trap collections can be used for assessing the phenology and social organization of 
temperate sweat bees in the absence of nesting data. The phenological and social lability of many sweat bee 
species make them ideal for studying geographic and temporal variability in sociality, and analyses of pan 
trap collections can make these studies possible when direct observations are impossible.
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Introduction

In temperate zone sweat bees (Hymenoptera: Halictidae), flight phenology is closely 
linked to sociality. Univoltine species are virtually always solitary or communal, whereas 
the necessity of producing a worker brood requires that eusocial species are bivoltine, 
or multivoltine, if multiple worker broods are produced. While the term “voltinism” 
technically refers to the number of generations per year, in studies of halictid bees, 
it has taken on an additional usage in phenology, and is frequently used to refer to 
the number of broods produced each year (Richards et al. 2010). In this study, we 
use voltinism to refer to the latter. Facultative social sweat bees exemplify the strong 
connection between phenology and sociality. Some species, like Lasioglossum calceatum 
and Halictus rubicundus, exhibit a bivoltine, eusocial life history at low altitudes and a 
univoltine, solitary life cycle at high altitudes (Sakagami and Munakata 1972; Eickwort 
et al. 1996). Others exhibit social and phenological polymorphism within populations, 
with solitary nest foundresses provisioning a single brood of reproductives, while 
eusocial foundresses produce a worker brood that subsequently provisions the second 
brood (Packer et al. 1989; Packer 1990). The strength of the link between a bivoltine 
phenology and eusociality is well known phylogenetically, leading to the hypothesis 
that in halictine bees evolutionary transitions to eusociality involved two major steps: 
an initial transition from univoltinism to bivoltinism, and a subsequent step from 
solitary breeding to eusociality (Brady et al. 2006).

The subgenus Lasioglossum (Dialictus) is well known as a vast and socially diverse 
group of halictid bees, with over 250 species existing in North America (Ascher and 
Pickering 2020). Dialictus includes species categorized as solitary, communal, semiso-
cial, eusocial, and socially parasitic (Batra 1966; Breed 1976; Eickwort 1986; Wcislo 
1997; Gibbs 2010, 2011). Phylogenetic analyses suggest that Lasioglossum as a whole 
is ancestrally eusocial, implying considerable evolutionary lability in social traits and 
multiple reversions from social to solitary behaviour (Gibbs et al. 2012). However, the 
behaviour of many Dialictus remains unstudied. The social status of some species has 
been broadly categorized based on presumed similarities among closely related taxa, 
but the lability of halictid sociality means that closely related species might exhibit 
very different types of social behaviour. Moreover, broad social categories are limited 
in their usefulness for precisely tracing the sequence of evolutionary changes that must 
have occurred in transitions between alternative social states, such as caste-based or 
casteless sociality (Dew et al. 2016; Richards 2019). More detailed studies of solitary 
and social halictine bees are required to provide this kind of behavioural data.

Ideally, to study colony social organization in sweat bees, large numbers of colonies are 
observed from start to finish of at least one complete breeding season (Rehan et al. 2013; 
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Onuferko et al. 2015; Awde and Richards 2018). The activity of foragers at nest en-
trances established flight phenology and the timing of brood provisioning phases. Nests 
are excavated at various times to obtain ‘snapshots’ of colony development and brood 
production, as well as to collect adult females. Adult females are examined to investigate 
body size, wing wear, mandibular wear, and ovarian development status, traits that relate 
to caste and reproductive status. However, a major challenge is that sweat bee nests are 
rarely found together in large enough numbers that biologists are likely to devote the time 
to studying them, even in areas where local populations are highly abundant. Museum 
collections provide an alternative source of specimens that can be used to investigate both 
phenology and reproductive activities of halictid and other bees. Passive collection meth-
ods, such as regular pan-trapping or sweep-netting, provide large numbers of halictids 
specimens (Portman et al. 2020) that can be counted and used for estimating the relative 
abundance of foraging females from spring to autumn. Preserved specimens, including 
pinned specimens, can be rehydrated in water, allowing females to be dissected and their 
ovarian development measured (Packer et al. 2007; Richards et al. 2010, 2015).

In this study, we used pinned specimens previously collected and identified for 
a long-term monitoring study in the Niagara region of southern Ontario, Canada 
(Richards et al. 2011; Onuferko et al. 2015) to evaluate the social status of three 
sympatric Dialictus populations. Of 33 Lasioglossum (Dialictus) species present locally, 
only seven are known to be eusocial (including L. laevissimum), 17 are predicted to 
be eusocial (including L. hitchensi and L. ellisiae), one is possibly communal, four are 
cleptoparasites or social parasites, and four have undescribed social statuses (Onuferko 
et al. 2015). None of the species are described as solitary. Thus our primary objective 
was to describe the phenology and social behaviour of two species, L. (Dialictus) 
hitchensi and L. (D.) ellisiae, both predicted to be eusocial on phylogenetic grounds 
(Gibbs et al. 2012; Onuferko et al. 2015). Our second objective was to further validate 
the use of pinned specimens collected using passive collecting methods, such as pan 
traps and sweep nets, when nests are not available. We do this by explicitly comparing 
social trait inferences from pan trap collections of L. (D.) laevissimum, to those from a 
study based on detailed behavioural observations and nest excavation from a sympatric 
population (Awde and Richards 2018).

Methods

Study sites and specimen collections

All specimens were collected from grassy meadows as part of a monitoring study from 
2003 to 2006 and from 2008 to 2013 at four sites in southern Ontario: Brock Uni-
versity (43.1178°N, 79.2473°W) and the adjacent Glenridge Quarry Naturalization 
Site in St. Catharines (43.1197°N, 79.2390°W), the Elm Street Naturalization Site in 
Port Colborne (42.9235°N, 79.2579°W), and the Station Road Naturalization Site in 
Wainfleet (42.8847°N, 79.376°W; Onuferko et al. 2015). Descriptions of collecting 
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sites and the local bee assemblage, which includes 33 Dialictus species, are available in 
Richards et al. (2011) and Onuferko et al. (2015).

We used specimens collected via pan traps, netting from flowers, and sweep-netting 
to examine the social status of L. laevissimum, L. hitchensi and L. ellisiae. Lasioglossum 
laevissimum was used for a comparison of social trait inferences from monitoring 
studies with the ‘gold standard’ of nest-based observations from a previous study in 
the same region (Awde and Richards 2018). Lasioglossum hitchensi and L. ellisiae were 
selected because large numbers of specimens had been identified and collected, and 
because these two species are likely to be phylogenetically informative in future studies.

Collection methods were compared and described in detail in Richards et al. 
(2011). Pan trapping and sweep netting were carried out each year either weekly or 
biweekly from spring (April or May) to fall (September or October), for a total of 
10 years of collections, covering the entire flight season for the local bee community. 
Specimens were preserved in 70% ethanol before being pinned and identified using 
taxonomic keys by Gibbs (2010, 2011) for Lasioglossum (Dialictus) in combination 
with online keys on Discover Life (Onuferko et al. 2015; Ascher and Pickering 2020). 
Specimens caught in 2003 were identified by Dr. Jason Gibbs (Richards et al. 2011) 
and those caught from 2004–2013 were identified by Dr. Thomas Onuferko (Onufer-
ko et al. 2015), with additional confirmations by Ms. Nora Romero. All specimens are 
currently in the collection of the Brock Bee Lab, at Brock University, Canada.

Flight phenology

In the Niagara region of southern Ontario, halictid bees generally begin spring brood 
provisioning activity in late April or early May and summer flight activity peaking in 
July (Richards et al. 2010, 2015; Proulx 2020). Locally, univoltine sweat bee popula-
tions can be identified in weekly (or biweekly) pan trap collections as those showing 
a single peak in female abundance (pan traps are presumed to mainly attract foragers) 
from spring to summer, whereas bivoltine sweat bee populations exhibit two peaks, 
one in spring and one in summer.

Flight phenology (whether bees were univoltine or bivoltine) was inferred solely 
from weekly abundances of female and male bees caught in pan traps, pooling samples 
over the ten years from 2003 to 2013 (bees were not collected in 2007). Total num-
bers of pan trapped specimens were 51 females and 1 male for L. laevissimum, 1473 
females and 7 males for L. hitchensi, and 54 females and 13 males for L. ellisiae. For 
each species, we decided which week to designate as the end of the spring provisioning 
and the beginning of summer provisioning periods, based on several key factors: the 
re-appearance of unworn females suggesting emergence of Brood 1, the appearance 
of males (most eusocial species produce at least a few males in Brood 1), and whether 
population sizes seemed to be increasing (reviewed in Awde and Richards 2018; Breed 
1976; Packer 1992; Richards et al. 2010). We also plotted mean weekly abundance of 
females and males (the number of bees caught per calendar week divided by the total 
number of collections per calendar week, pooling over years), and then used a local 
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polynomial regression (Loess) smoother to evaluate the number of peaks in female bee 
abundance and foraging activity from spring to summer (geom_smooth command, 
package: ggplot2). Since data were pooled over ten years of collections over which the 
timing of spring activity might differ considerably, the designated cutoff dates between 
spring and summer provisioning are approximate.

Female traits related to social behaviour

Female traits were examined in females collected by all three methods (Table 1). 
We examined female traits frequently used to evaluate colony social organization in 
halictid bees, including body size, mandibular and wing wear, and degree of ovarian 
development (Packer 2007; Richards et al. 2010, 2015). Pinned female specimens 
were measured and dissected using a Zeiss stereomicroscope, equipped with an ocular 
micrometer at 8–66× magnification. Head width (HW) was measured as the widest 
distance across the head, including the compound eyes. Costal vein length (CVL) was 
measured on the right forewing, from the base of the costal vein to the stigma (Suppl. 
material 1). If the right wing was damaged, the left wing was used instead. Since 
HW and CVL were positively correlated in all species (Pearson’s product-moment 
correlation; L. laevissimum: t=4.75, df=91, p=7.322e-06; L. hitchensi: t=21.65, df=120, 
p<2.2e-16, L. ellisiae: t=15.93, df=78, p<2.2e-16), HW was used for size comparisons. 
Size differences between spring and summer females were calculated using the formula:

[(mean spring HW – mean summer HW) / mean spring HW] X 100

We assessed the amount of burrow digging and flight activity performed by each female 
by examining the level of wear that accumulated on their mandibles and forewings 
respectively (Suppl. material 2). Mandibular wear (MW) and wing wear (WW) were 
scored on a scale from 0 to 5 (i.e., unworn to completely worn), using whole numbers 
only. A total wear (TW) score for each female was obtained by summing MW + WW. 
We classified ‘worn’ bees as those having MW or WW scores ≥ 2 (Richards et al. 2010); 
we rarely observed bees with distinctly different levels of wear on their mandibles and 
wings among all species.

Ovarian development score was assessed to distinguish sterile and reproductive 
females (Suppl. material 3). Pinned specimens were rehydrated in a jar of distilled 
water for 24 hours, then dissected. Thin or only slightly thickened ovaries were 

Table 1. Numbers of pinned specimens used for examining female social traits.

Species Collection years Collection method
Pan traps Netting from flowers Sweep-netting Total

L. laevissimum 2003–2013* 34 43 18 95
L. hitchensi 2009 124 0 0 124
L. ellisiae 2003 40 9 33 82

* Bees were not collected in 2007.
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given a score of 0. For all females with developing oocytes, each oocyte was scored 
by its size relative to a fully developed oocyte (0.25, 0.50, 0.75, or 1), and then 
scores for all oocytes within an individual were summed to create a total ovarian 
development (OD) score. This scoring method has frequently been used to assess 
potential reproductivity of halictid bees (e.g. Richards et al. 2010, 2015). Following 
Breed (1976), any female whose largest oocyte was at least 1/2 size (scored as 0.5), 
was classified as “fecund”.

While rehydrated ovaries from pinned specimens appeared similar in size to those 
of specimens stored in liquid preservative (Packer 2007; Richards et al. 2010), it is 
possible that the ovaries of pinned specimens do not return to their pre-desiccation 
size, which could result in pinned specimens appearing to have lower OD. We avoid 
this potential bias by using fractional scores to calculate total OD, which is, in effect, 
a relative ranking of females’ ovarian development, and by avoiding comparisons of 
absolute oocyte size across studies.

Inferring colony social organization

Univoltine populations of non-parasitic halictids are most likely to be either solitary or 
communal. In both solitary and communal species, the distributions of body size and 
ovarian development are expected to be unimodal, so nest observations are required to 
distinguish between these possibilities.

Bivoltine populations of non-parasitic halictids are most likely to be either solitary 
or eusocial. Locally, the only known communal sweat bee (Agapostemon virescens) 
is univoltine (MH Richards, unpub. data), whereas at least one solitary species 
(Lasioglossum zonulum) is bivoltine (Proulx 2020). We use the term foundress to refer 
to overwintered females that establish nests and forage in spring after emerging from 
hibernation (Eickwort et al. 1996). Based on previous studies of solitary and eusocial 
sweat bees (Danforth et al. 2003), in solitary bivoltine species, foundresses and 
their daughters (summer females) are predicted to be similar in size, to accumulate 
similar levels of wear, and to have similar levels of ovarian development (Packer 
1994; Eickwort et al. 1996). In contrast, eusocial foundresses (spring queens) are 
predicted to be significantly larger than most of their daughter workers (summer 
females), to accumulate more wing and mandibular wear, and to have significantly 
higher ovarian development (Packer 1986; Richards et al. 2010; Awde and Richards 
2018). Moreover, the distributions of ovarian development should differ between 
the summer foragers of solitary and eusocial species. In solitary species, summer 
foragers should be provisioning their own brood cells and so all females are expected 
to have high levels of ovarian development, consistent with laying eggs. In eusocial 
species, many or most summer workers provision queen-laid eggs and exhibit little 
or no ovarian development. Across eusocial Dialictus populations, the proportion of 
foraging workers with developed ovaries can vary from 9 to 63% (summarized in 
Awde and Richards 2018).
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Data analyses and software

Data is available on the Brock University repository (https://dr.library.brocku.ca/). All 
statistical comparisons were performed in R, version 3.4.3 (through RStudio, version 
1.1.383). Figures were created using ggplot2. Initial comparisons of HW, TW, and OD 
between spring and summer females were based on analysis of variance. Where the er-
ror term was not normally distributed, we used Kruskal-Wallis tests.

Results

Lasioglossum laevissimum

Phenology: The phenology based on pan trapped specimens of L. laevissimum is 
shown in Figure 1, with additional details presented in Table 2. Spring females 
(foundresses) were mostly caught from April to early May (weeks 0 to 3). Two 
large, worn females collected in week 6 were classed as foundresses. Thus, the spring 
brood-provisioning phase for Brood 1 extended to about the end of May. Summer 
females (females produced in Brood 1) were first pan-trapped in week 8, suggest-
ing that the Brood 2 provisioning phase began in mid-June. No males were caught 
until week 19, suggesting that males were not produced in Brood 1. The single male 
caught in week 19 likely was produced in Brood 2, so its capture suggested the onset 
of Brood 2 emergence. A slight increase in the numbers of foragers caught during 
weeks 23–25 suggests the possibility that late foragers (possibly produced in Brood 
2) might be provisioning a third brood (Brood 3). Females were caught in pan traps 
until October (week 25).

Colony social organization: Traits of spring and summer females are shown in 
Table 2. Spring females were 3.6% larger than workers based on mean head width 
(ANOVA, F=4.62, df=1,93, p=0.034). Spring and summer females had similar wear 
scores (ANOVA, F=0.62, df=1,92, n.s.). Spring females, on average, had significantly 
higher OD scores than summer females (Kruskal-Wallis, H=5.45, df=1, p=0.020) and 
were more likely to be fecund (Figure 2).

The bivoltine or multivoltine phenology inferred from pan trapped specimens, as 
well as the larger size and greater ovarian development of spring females, are consistent 
with eusociality, in agreement with the results from nest observations and excavations 
for a sympatric population (Table 2).

Lasioglossum hitchensi

Phenology: The spring provisioning period began in early April and lasted until 
late June (weeks 0 to 8). The summer provisioning period lasted from late June to 
September. The capture of a male in week 6 (2011) indicates that nests initiated very 

https://dr.library.brocku.ca/
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early in spring may produce Brood 1 offspring several weeks earlier than the population 
average. The males caught in week 17 would likely have been produced in Brood 2 
emergence. Thus, L. hitchensi exhibits a bivoltine phenology.

Figure 1. Bivoltine flight phenologies of L. laevissimum, L. hitchensi and L. ellisiae, inferred from pan 
trap collections, 2003–2013. The number of bees collected per week represents the average number of bees 
collected in pan traps, across sites and years, from 2003 to 2013. A total of 52 L. laevissimum bees, 1480 
L. hitchensi bees, and 67 L. ellisiae bees were collected. Dark grey bars represent males, white bars represent 
spring females and light grey bars represent summer females. The red polynomial regression (drawn using 
the geom_smooth function, Loess method, in R) was used to help visually identify the number of abundance 
peaks for each species. Black arrows indicate the weeks when L. hitchensi males were collected in pan traps.



Sociality of three sweat bee species inferred from passive collections 25

Colony social organization: Reproductive traits of spring and summer females 
are presented in Table 3. Spring females on average were 3.2% larger than summer 
females based on head width. Wear did not differ significantly between spring and 
summer females. Median ovarian development scores were substantially higher in 
spring compared to summer females, as most spring females had at least one ¾ or fully 
developed oocyte, while most summer females had undeveloped oocytes.

The average size difference between spring and summer females belied a curious 
pattern, evidenced by a distinct drop in summer female head width in week 16 (Suppl. 
material 4). We therefore divided the summer females into early (collected from weeks 
10 to 15) and late groups (collected from week 16 onward) for further comparisons 
(Figure 3). Early summer females were as large as spring females, and significantly 
larger than late summer females (ANOVA, F=24.107, df= 2,119, p=1.62e-09). 
However, all three groups had exhibited a similar degree of wear (TW: ANOVA, 
F=1.70, df=2,119, p=0.188). Spring females had significantly higher OD scores than 
both early and late summer females (Kruskal-Wallis, H=21.27, df=2, p=2.41e-05).

The combination of a bivoltine phenology, greater size, and higher ovarian devel-
opment of spring than summer females suggests that L. hitchensi is eusocial.

Table 2. Phenological events and social traits of L. laevissimum females inferred from passive collections 
and nest excavations. Spring females from Awde and Richards (2018) were queens collected from nests in 
summer that would have been foraging in spring, while summer females were workers collected from nests 
in summer. Statistical comparisons are for pinned females assessed in this study versus females collected 
from nests in Awde and Richards (2018).

Pan traps, sweeps, and 
flower collections (this 

study)

Nest excavations and 
observations (Awde 
and Richards 2018)

Statistical comparisons

Phenology
First foraging trip by spring female late April (week 0) late April (week 1) –
Quiescent period between spring and summer 
foraging 

mid-May – early June 
(week 4 – 7)

mid-May – late June
(week 6 – week 10)

–

First foraging trip by summer female mid-June (week 7 or 8) late June (week 10) –
First adult male late August (week 19) mid-July (week 13) –
First adult gyne mid-July (week 12) mid-July (week 12) –
Last foraging trip by summer female   early October (week 25) early October (week 25) –
Spring female traits
Head width (mm) (mean ± SD, n) 1.65 ± 0.06, n=10 1.67 ± 0.08, n=24 KW=0.07, df=1, p=0.79
Median total wear score (range, n) 4 (1 – 8, n=10) 4.5 (2 – 9, n=24) KW=0.27, df=1, p=0.60
Median OD score (range, n) 1.125 (0 – 2.5, n=10) 2.5 (0.75 – 3.5, n=24) KW=6.88, df=1, p=0.009
Proportion fecund (largest oocyte at least 1/2 size) 5/10 (50%) 21/24 (87.5%) X2=0.36, df=1, p=0.5474
Proportion mated NA  24/24 (100%) –
Summer female traits
Head width (mm) (mean ± SD, n) 1.59 ± 0.09, n=85 1.61 ± 0.89, n=135 KW=4.34, df=1, p=0.037
Median total wear score (median, range, n) 4 (0 – 8, n=84) 3 (0 – 10, n=132) KW=11.66, df=1, p<0.001
Median OD score (range, n)  0 (0 – 2.25, n=85) 0 (0 – 3.25, n=133) KW=0.78, df=1, p=0.38
Proportion fecund (largest oocyte at least 1/2 size) 11/85 (12.9%) 23/133 (17.3%) X2=0.3, df=1, p=0.5813
Proportion mated NA 52/133 (39.1%)
Queen-worker size difference 3.6% 4.6% (n=21 comparisons 

within colonies)
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Lasioglossum ellisiae

Phenology: The brood-provisioning phase for Brood 1 began in mid-April and 
continued until mid-June (weeks 1 to 9; Figure 1). The second brood-provisioning 
phase began in mid-July (week 13) and continued until late September (week 23). 

Figure 2. Wear and ovarian development of adult females caught in spring and summer. Fisher exact tests 
were used to compare the proportions of spring and summer females in each ovarian category. Unworn 
summer females with no ovarian development were excluded, as these females likely were newly eclosed. 
In L. laevissimum and L. hitchensi, spring females were significantly more likely to be fecund (largest 
oocyte at least 1/2-developed), while in L. ellisiae, spring and summer females showed similar levels of 
ovarian development (see Table 3 for statistics).



Sociality of three sweat bee species inferred from passive collections 27

Males first appeared in week 11 so Brood 1 was definitely emerging by this time. Thus, 
L. ellisiae females exhibit a bivoltine phenology.

Colony social organization: Reproductive traits of spring and summer females 
are presented in Table 3. Spring females were 3.5% larger than summer females based 
on head width. However, spring and summer females had similarly high wear and 
OD scores and 76% of females from each group were fecund (Figure 2, Table 3). The 
similar wear and ovarian development of spring and summer females suggest that both 
spring and summer females were engaged in nest construction, brood provisioning, 
and egg-laying (Table 3). Thus, L. ellisiae likely is solitary or communal.

Discussion

The value of monitoring studies for inferring colony sociality: evidence from 
L. laevissimum

Observations of bees at nests are the ‘gold standard’ for investigating colony social 
organization. However, the social status of many sweat bee species has remained 
unstudied because nests have not been found in large enough numbers to persuade 
biologists to spend time studying them. The widespread growth of monitoring studies 
based on collections of foragers, provides an alternative source of social information. 
In this study, one of our objectives was to demonstrate that specimens collected in 
monitoring studies provide detailed information about sweat bee social behaviour that 
compares well with studies based on nest observations.

Table 2 provides a detailed comparison of the phenology and sociality of L. 
laevissimum in southern Ontario inferred from nest and non-nest-based observations 
(for convenience, we refer to specimens from the current study as ‘trapped’). Based on 

Table 3. Body size and reproductive traits of L. hitchensi and L. ellisiae females with statistical compari-
sons between spring and summer. Head width is given as the mean and standard deviation. Total wear 
and ovarian development scores are given as the median and range. Statistical comparisons are for spring 
versus summer females.

Species and trait Spring females Summer females Statistical comparisons
L. hitchensi
No. specimens 34 90
Head width (mm) 1.58 ± 0.09 1.53 ± 0.09 ANOVA, F=7.40, df=1,120, p=0.007
Total wear score 4.0 (2–8) 4.0 (0–10) ANOVA, F=0.385, df=1,120, p=0.536
OD score 0.75 (0–3.25) 0.0 (0–2) Kruskal-Wallis, H=19.99, df=1, p=7.80e-06
Proportion fecund 21 / 34 (62%) 18 / 88 (20%) Fisher test, p=2.48e-05
L. ellisiae
No. specimens 46 36
Head width (mm) 1.43 ± 0.05 1.38 ± 0.04 ANOVA, F=21.05, df=1,79, p=1.66e-05
Total wear score 4.0 (0–7) 5.0 (0–10) ANOVA, F=3.88, df=1,78, p=0.052
OD score 0.75 (0–2.25) 1.0 (0–1.75) Kruskal-Wallis, H=0.01, df=1, p=0.923
Proportion fecund 32 / 43 (74%) 26 / 35 (74%) Fisher test, p=1
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three years of nest observations and excavations, Awde and Richards (2018) found that 
spring foundress provisioning lasted from late April to late June, worker provisioning 
activity began in late June, and males and gynes were first collected from nests in 
July. The timing of brood-provisioning by queens and workers inferred from the pan 
trap data agrees well with this colony phenology inferred from nest data (Awde and 

Figure 3. Social trait comparisons among spring, early summer and late summer females of L. hitchensi. 
Spring females were caught in weeks 0 to 8, early summer females in weeks 10 to 15, and late summer 
females from week 16 onward. Early summer females were larger than late summer females but showed 
similar signs of wear and ovarian development. See Table 2 for statistical analyses.
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Richards 2018). In fact, the pan trap phenology for L. laevissimum even confirmed 
subtle, but repeated observations from multiple populations, that there is a third phase 
of female flight activity, as previously suggested by finding newly provisioned brood 
cells produced in nests excavated in late summer and autumn (Packer et al. 1989; 
Packer 1992; Awde and Richards 2018). Discrepancies between pan traps and nest 
data in the timing of major events likely stem from two causes: first, sweat bees exhibit 
considerable variation in the timing of spring and summer foraging in response to 
weather and climate variation (Richards et al. 2015). Second, pan traps likely do not 
attract all flying bees equivalently; at our research sites, male sweat bees are captured 
in pan traps far less frequently than females (MH Richards, unpub. data). The lack 
of males in pan traps probably accounts for the large discrepancy in timing of male 
emergence between pan traps and nest data (Table 2). Thus, female phenology based 
on pan traps matched exceedingly well with nest observations, but male phenology did 
not. Fortunately, most conclusions about colony social organization are based on the 
activities of females.

Social trait inferences based on examination of female specimens from trapping 
and nesting studies were largely in accordance, in that both clearly point to eusocial 
colony organization. While several traits were similar between trapped and nest speci-
mens (e.g., spring female size, wear, and proportion of fecund females), there were also 
some differences. Trapped queens had significantly lower OD scores than nest queens; 
this difference reflects the fact that trapping began in April when some foundresses had 
not yet begun ovarian development, whereas nest queens were mostly collected after 
the onset of Brood 2 egg-laying (Awde and Richards 2018). Trapped workers were on 
average slightly smaller and more worn than nest workers, which suggests that smaller 
workers were more likely to leave the nest as foragers, while larger workers may be 
more likely to remain inside the nests, waiting for reproductive opportunities (Awde 
and Richards 2018). Another important difference was in the queen-worker size dif-
ference, which was smaller in trapped than nest specimens. Ideally, queen-worker size 
difference should be calculated based on comparisons between queens and the workers 
in their own nests; population-level averages, whether from pan traps, netting, or nest 
observations, consistently underestimate nest-based estimates, because of wide overlap 
in the sizes of queens and workers (Dunn et al. 1998; Richards et al. 2010, 2015). This 
would be an important consideration in cross-species comparisons that use queen-
worker size differences as a metric (Breed 1976; Packer and Knerer 1985).

Some variables important in comparative analyses of the strength of eusocial 
colony organization cannot be inferred without nest data, including colony size, queen 
longevity, the frequency of queen replacement, and the proportion of males in Brood 1 
(Breed 1976; Packer and Knerer 1985; Awde and Richards 2018). The proportion of 
mated workers could probably be reliably estimated from trapped specimens stored 
in liquid; finding the spermatheca and distinguishing whether it contains sperm is 
difficult when specimens have been pinned and dried for years before being rehydrated 
and dissected (Packer et al. 2007). Although rehydrated L. laevissimum females were 
assessed for matedness, we were not confident in the results (D.N. Awde, pers. obs.). 
One variable that we did not report here is the timing of gyne emergence. In our 
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experience, it can be difficult to distinguish between gynes and late-emerging workers, 
even when using specimens derived from nest excavations. In fact, L. laevissimum 
presents a particular puzzle with respect to gyne behaviour. In our nest-based study, 
we found females that appeared to be newly emerged gynes, but which had developing 
ovaries. We also found newly provisioned brood cells far too late in the season for brood 
to complete development, an odd phenomenon also noted for a Calgary population of 
this species (Packer 1992; Packer and Owen 1994). In general, late-emerging workers 
of eusocial sweat bees, especially those that emerge into queenless nests, may frequently 
overwinter as gynes (Danforth et al. 2003).

The social status of Lasioglossum hitchensi and L. ellisiae

Reproductive division of labour is the crucial variable distinguishing halictine eusocial-
ity (Batra 1966; Richards 2019). In L. hitchensi, eusociality was indicated by the signif-
icantly higher ovarian development of spring females. Small summer foragers with low 
ovarian development fit the classic eusocial phenotype of workers provisioning eggs to 
be laid by queens. The low proportion of fecund summer foragers (20%) is comparable 
to that observed in L. laevissimum (Table 2) and suggests fairly strong queen control 
of worker behaviour, as measured by this criterion (reviewed in Awde and Richards 
2018). A novel finding was that foragers collected in early summer (weeks 10 to 15) 
were as large as spring foundresses. In contrast, small body size predominated among 
summer foragers a few weeks later. The large size of these early summer females sug-
gests that they could be more resistant to queens’ efforts to coerce them into becoming 
workers (Richards and Packer 1996), but on average, the early summer workers did not 
have higher ovarian development scores than late summer workers, so the significance 
of their large body size awaits nest-based observation.

We concluded that L. ellisiae is either solitary or communal because summer 
foragers were just as likely to have highly developed ovaries as spring foragers, and 
because summer foragers of L. ellisiae had significantly more ovarian development than 
those of the two eusocial species, L. hitchensi and L. laevissimum. Without nest data, 
females of solitary and communal species are indistinguishable, because the variance 
among females in their degree of ovarian development should be similar to the variance 
in solitary species. However, we suggest that solitary behaviour is more likely for two 
reasons. First, the only other communal halictid at our sites, Agapostemon virescens, is 
univoltine, and univoltinism is thought to be typical of communal halictids (Abrams 
and Eickwort 1980). Second, evolutionary reversion from eusocial to solitary behaviour 
has occurred frequently in halictid bees, whereas transitions between communal and 
eusocial behaviour are thought to be far rarer (Richards et al. 2003).

Body size patterns in eusocial and secondarily solitary sweat bees

Comparisons between eusocial and secondarily solitary sweat bees should help us to 
understand trait changes hypothesized to have been important in evolutionary tran-
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sitions between solitary and social behaviour (Plateaux-Quénu and Plateaux 1985; 
Plateaux-Quénu et al. 1989). Body size differences between queens and workers are 
almost ubiquitous in eusocial Hymenoptera. In eusocial sweat bees, the larger size of 
queens enables them to aggressively manipulate the behaviour of their smaller daugh-
ters, forcing them to behave as workers (Richards and Packer 1996; Smith et al. 2019). 
Thus, in eusocial species there is clearly a selective advantage for queens in producing 
workers smaller than themselves.

Although solitary halictines are not expected to produce spring and summer fe-
males of different sizes, since they are all the same caste (Lin and Michener 1972), 
there may be reasons why spring and summer females of solitary species differ in size. 
For instance, larger body size of spring females might be an advantage in surviving 
hibernation, while smaller body size might be an advantage for summer females that 
forage in higher temperatures (Richards and Packer 1994, 1995). We found that in 
L.  ellisiae, spring females were larger, as is also true in another secondarily solitary 
species, L. (D.) villosulum (Plateaux-Quénu et al. 1989). Secondarily solitary species 
might advantageously retain a spring-summer size difference inherited from a eusocial 
ancestor. In contrast, spring and summer females of two largely solitary species in 
another subgenus, L. (Lasioglossum) scitulum and L. (L.) mutilum, do not differ in size 
(Miyanaga et al. 1998, 2000). In these two species, the reversion to solitary behaviour 
may be associated with a switch to similarly sized spring and summer females, which 
would depend on whether ancestrally eusocial halictines always displayed this size dif-
ference. In the most strongly eusocial halictine, Lasioglossum marginatum, queens and 
workers are the same size (Plateaux-Quénu 1959, 1962).

Linkages between phenology and social behaviour

Bivoltinism is necessary for eusociality in sweat bees, because in virtually all known 
species, daughters born in the first brood, remain in their natal nest to help rear a 
second brood during the same brood-rearing season, after which colonies die out. The 
only known exception to this rule is Lasioglossum marginatum, which lives in peren-
nial colonies that produce a single brood of workers each year for several years, before 
producing reproductives only in the last year of a colony’s life (Plateaux-Quénu 1959, 
1962); the phylogenetic position of L. marginatum clearly indicates that its univolt-
ine, perennial life history is derived. While it seems that halictine eusociality requires 
bivoltinism, the converse is not true. There have been reversions to solitary behaviour 
occurring in Dialictus (Danforth 2002; Danforth et al. 2003; Gibbs et al. 2012), and 
species like L. ellisiae and L. villosulum show social reversion is not always associated 
with reversions to univoltinism. Indeed, phylogenetic relationships within Dialictus 
indicate that there may have been multiple evolutionary changes back and forth in 
both phenology and sociality. Lasioglossum ellisiae is closely related to L. vierecki, which 
is also bivoltine and solitary, but other closely related species are eusocial (L. parvum, 
L.  umbripenne and L. gundlachii; Wille and Orozco 1970; Eickwort and Eickwort 
1971; Eickwort 1988; Gibbs et al. 2012), so either solitary or eusocial behaviour might 
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be secondary in this group. Lasioglossum villosulum is related to the solitary univoltine 
bees L. lucidulum and L. lustrans, implying that it might be secondarily bivoltine (Daly 
1961; Knerer 1981; Plateaux-Quénu 2008; Gibbs et al. 2012).

Conclusions

The first study to compare specimens from pan trap and nest data in assessing colony 
social organization, focused on the eusocial behaviour of Halictus confusus (Richards et 
al. 2010). Systematic pan trap collections have now been used to describe solitary and 
eusocial behaviour of five species for which nests were not available: Halictus tripartitus 
(Packer et al. 2007), H. ligatus (Richards et al. 2015), L. ellisiae and L. hitchensi (cur-
rent study), and L. zonulum (Proulx 2020). Given the phenological and social lability 
of many sweat bee species, it has long been a goal of social insect biologists to examine 
geographic and temporal variability in sociality, within and among species (Danforth et 
al. 2013; Kocher et al. 2014). Using specimens collected in monitoring studies, includ-
ing dissections of rehydrated, pinned specimens, can make achieving this goal realistic.
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Supplementary material 1

Figure S1. Right forewing of an L. hitchensi female.
Authors: Lyllian A-J Corbin
Data type: Image
Explanation note: Forewing of a Lasioglossum (Dialictus) hitchensi adult female with 

labels indicating the stigma, costal vein, and costal vein base. Image was captured 
using a Ziess stereomicroscope, with an AmScope camera attachment, at 40× mag-
nification.
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(ODbL) is a license agreement intended to allow users to freely share, modify, and 
use this Dataset while maintaining this same freedom for others, provided that the 
original source and author(s) are credited.
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Supplementary material 2

Figure S2. Scoring systems for mandibular wear (MW) and wing wear (WW). 
Authors: Lyllian A-J Corbin
Data type: Image
Explanation note: Diagram showing wear scores assigned to Lasioglossum (Dialictus)

females based on the amount of accumulated wear on their mandibles and wing 
margins.

Copyright notice: This dataset is made available under the Open Database License 
(http://opendatacommons.org/licenses/odbl/1.0/). The Open Database License 
(ODbL) is a license agreement intended to allow users to freely share, modify, and 
use this Dataset while maintaining this same freedom for others, provided that the 
original source and author(s) are credited.

Link: https://doi.org/10.3897/jhr.88.73220.suppl2

Supplementary material 3

Figure S3. Scoring systems for ovarian development scores.
Authors: Lyllian A-J Corbin
Data type: Image
Explanation note: Diagrams illustrating oocyte sizes (0, 0.25, 0.5, 0.75, and 1) scored 

in female specimens to assess ovarian development
Copyright notice: This dataset is made available under the Open Database License 

(http://opendatacommons.org/licenses/odbl/1.0/). The Open Database License 
(ODbL) is a license agreement intended to allow users to freely share, modify, and 
use this Dataset while maintaining this same freedom for others, provided that the 
original source and author(s) are credited.
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Supplementary material 4

Figure S4. Head width comparisons among weeks suggest a mix of social traits in 
L. hitchensi summer females
Authors: Lyllian A-J Corbin
Data type: Image
Explanation note: Head width comparisons in Lasioglossum (Dialictus) hitchensi spring 

and summer females based on week collected. Figure shows boxplots, coloured by 
spring and summer female groups, on weeks that females were collected in pan 
traps in 2009. The black arrow indicates a decrease in summer female head width 
started on week 16, in which early summer females (collected in weeks 10 to 15) 
were larger than late summer females (collected in weeks 16 to 23).
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use this Dataset while maintaining this same freedom for others, provided that the 
original source and author(s) are credited.
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