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Abstract
Leaf-cutting ants depend on mutualistic fungi to survive. An infection that massively affects the workers 
compromising the proper maintenance of the fungus, or that can attack the fungus garden, can be fatal to 
the colony. Thus, leaf-cutting ants have evolved a complex defense system composed of both innate indi-
vidual immunity and collective immunity to protect the colony against potential threats. To characterize 
the collective and individual immunity of Atta cephalotes workers to Metarizhium anisopliae we assessed 
the hygienic behavior and the expression of antimicrobial peptides of A. cephalotes workers triggered by 
Metarizhium anisopliae spores. As a control challenge, workers were treated with water. Regardless of 
whether the challenge was with water or spore suspension, A. cephalotes workers displayed an immediate 
response characterized by an increase in time spent both self-grooming and collective grooming along with 
a reduction in time spent fungus-grooming. The individual immunity triggered the expression of abaecin 
as early as 24 hours post-infection, exclusively in workers challenged with M. anisopliae. In contrast, the 
level of expression of defensin remained constant. These results suggest that upon being challenged with a 
suspension of M. anisopliae spores, A. cephalotes workers deploy both collective and individual immunity 
to produce a response against the invader. However, when the spores of M. anisopliae are applied as liquid 
suspension collective immunity deploys a generic strategy, while individual immunity shows a specific 
response against this entomopathogen.
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Introduction

Attine ants (Formicidae: Myrmicinae: Attini: Attina) comprise approximately 250 
species that establish associations with mutualistic fungi as a source of nutrition (Ward 
et al. 2015; Branstetter et al. 2017). Leaf-cutting ants of genera Atta and Acromyrmex 
are among the most derived of the tribes, in which they cultivate Leucoagaricus fungi 
using fresh plant material as a substrate (Chapela et al. 1994; Mueller et al. 2001, 
2005). In return, mutualist fungi produce gongylidia—specialized structures used 
to feed the queen and the brood (Hölldobler and Wilson 2010). To assure fungus 
garden productivity, the workers select, harvest, and process large quantities of 
suitable plant material (Littledyke and Cherrett 1978; Folgarait et al. 1996; Estrada 
et al. 2013; Rocha et al. 2017) and build complex nests underground to provide an 
optimum environment for fungus growth (Kleineidam and Roces 2000; Bollazzi and 
Roces 2010; Verza et al. 2017). For instance, the nest can have up to thousands of 
chambers inhabited by millions of individuals in species of Atta (Jonkman 1980; 
Moreira et al. 2004).

The social lifestyle of leaf-cutting ants could, in principle, make them prone to 
infections with hazardous microorganisms for workers or the fungus garden (Hughes 
et al. 2002) due to enhanced transmission between frequently interacting individuals 
with a similar genetic background that possibly are susceptible to the same pathogens 
(Wilson et al. 2003; Pie et al. 2004; Cremer et al. 2007). In this sense, workers are in 
permanent contact with fungi that can overgrow the mutualist (e.g., Syncephalastrum 
racemosum and Trichoderma harzianum) that inhabit the soil and within the plant 
tissue they cut (Rodrigues et al. 2009; Rocha et al. 2017). Furthermore, infection of 
the fungus garden by Escovopsis, a specialized parasite of the mutualist (Muchovej and 
Della Lucia 1990; Seifert et al. 1995; Currie et al. 1999; Currie and Stuart 2001), is 
frequently detected in the garden of leaf-cutting ants, but it only significantly com-
promises the garden if the ants cannot groom the mutualist or properly dispose of the 
waste (Heine et al. 2018).

To protect the colonies against infection, leaf-cutting ants have evolved a com-
plex defense system composed of the innate immunity of individuals and collective 
immunity. Individual immunity involves physiologic mechanisms to clear potential 
threats, including the production of reactive oxygen species, encapsulation, and the 
production of antimicrobial peptides (Hoffmann 1995). In contrast, collective im-
munity is based on altruistic behaviors that result in avoidance, control, or elimination 
of parasitic infections (Siva-Jothy et al. 2005; Masri and Cremer 2014). Once a po-
tential hazard is detected, the workers deploy hygienic behaviors of collective immu-
nity including self-grooming, allogrooming (Fernández-Marín et al. 2003; Reber et al. 
2011), and fungus grooming (Currie and Stuart 2001; Little et al. 2006; Cremer et 
al. 2007). The particles removed via hygienic behaviors are compacted, possibly steri-
lized in the infrabucal pocket, and dumped as pellets (Little et al. 2003, 2006). This 
hygienic behavior is complemented by chemical defenses mediated by secretions of 
exocrine glands and the metapleural gland that contain fungal and bacterial inhibitors 
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(Do Nascimento et al. 1996; Poulsen et al. 2003; Rodrigues et al. 2008; Fernández-
Marín et al. 2015).

In addition to these mechanisms, Acromyrmex workers maintain a symbiosis with 
Pseudonocardia—an antibiotic-producing actinobacterium maintained in the cuticle. 
This association protects the fungus garden against infection with parasitic fungus 
Escovopsis (Currie et al. 2003; Poulsen et al. 2010; Cafaro et al. 2011). In contrast, 
Atta species have lost or reduced the symbiosis with Pseudonocardia (Currie et al. 2006; 
Mueller et al. 2008) suggesting that they rely more on collective immunity and chemical 
disinfection to protect the colony against invaders (Fernández-Marín et al. 2009).

The first barrier of individual immunity in leaf-cutting ants is a hard exoskel-
eton reinforced with a biomineral armor that protects workers from invaders in 
most cases (Siva-Jothy et al. 2005; Li et al. 2020). However, specific pathogens such 
as entomopathogenic fungus Metarizhium anisopliae can penetrate the worker’s cu-
ticle and reach the hemocoel (Hajek and St. Leger 1994; Moino Jr et al. 2002). 
In insects, constitutive mechanisms of innate immunity such as profenol oxidase 
cascade, phagocytosis, and reactive oxygen species production act to neutralize the 
microorganism as the first line of defense (Nappi and Christensen 2005; Evans et al. 
2006; Buchon et al. 2014). The expression of antimicrobial peptides (AMPs) is in-
duced after this generic response. These molecules eliminate the microorganisms via 
pore formation or metabolism disruption (Bulet et al. 2004; Siva-Jothy et al. 2005; 
Haine et al. 2008). The genome of leaf-cutting ants, Atta cephalotes and Acromyrmex 
equinatior contains sequences that code to abaecins, hymenoptaecins, and defensins 
(Zhang and Zhu 2012). Furthermore, abaecin and hymenoptaecin are expressed as 
a part of the immune response of Ac. equinatior workers against M. anisopliae (Yek 
et al. 2013).

The collective immunity of Acromyrmex against M. anisopliae has been previously 
described (Richard and Errard 2009; Walker and Hughes 2009; Morelos-Juárez et al. 
2010; Abramowski et al. 2011; Yek et al. 2013; Tranter et al. 2015; Nilsson-Møller et 
al. 2018; Calheiros et al. 2019). In contrast, the collective immunity of Atta has been 
less explored (Fernández-Marín et al. 2006; Fernández-Marín et al. 2009; Walker and 
Hughes 2011) and the research has been primarily centered on describing metapleural 
gland grooming. While this evidence highlights the relevance of chemical disinfection 
in Atta species, it does not assess the full spectrum of workers’ behavior upon a chal-
lenge with an entomopathogen. Furthermore, studies that simultaneously assess innate 
and collective immunity responses against an entomopathogen in leaf-cutting ants 
are scarce (Yek et al. 2013). To characterize the collective and individual immunity of 
A. cephalotes workers to M. anisopliae, we assessed workers’ hygienic behavior before 
and after a challenge with M. anisopliae. We evaluated the time spent by workers ex-
ecuting self-grooming, allogrooming, metapleural gland grooming, fecal fluid groom-
ing, and the production of infrabuccal pellets. In addition, we evaluated the expression 
of antimicrobial peptides abaecin and defensin as effectors of individual immunity. We 
hypothesized that upon a challenge with M. anisopliae, workers deploy collective and 
individual immunity to clear the entomopathogen.
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Methods

Leaf-cutting ant nest collection and immune challenge preparation

Between January and December of 2019, twelve mature nests of A. cephalotes were se-
lected and collected in Santiago de Cali, Valle del Cauca, Colombia (3°22'33.24"N, 
76°32'0.24"W). At least 400 g of fungus accompanied by workers was extracted per nest. 
The collected material was kept undisturbed for at least one week in 10 L plastic contain-
ers connected to a waste chamber (Valderrama et al. 2006). Microcolony arrangements 
were established to carry out the assays based on these source colonies. The composition 
of the microcolonies, as well as their number, will be described for each experiment.

Metarhizium anisopliae was isolated from commercial product BIO-MA (Biopro-
teccion SAS, Colombia). Initially, 90 g of product was resuspended in 90 ml of sterile 
water. Serial dilutions of this suspension were then cultured in potato dextrose agar 
(PDA) (BD, USA) to obtain axenic cultures. From these cultures, liquid suspensions 
of conidia at a concentration of 107 conidia/ml were prepared as a treatment.

Experiment 1: Behavioral response to M. anisopliae exposure

Five mature nests of A. cephalotes were selected to assess the behavioral response to 
M.  anisopliae. Six microcolonies composed of 15 medium workers (cephalic width 
1.4–1.8 mm) and 0.5 g of mutualistic fungus were established from each nest. The 
microcolonies were randomly assigned to treatment with spores of M. anisopliae or 
treatment with water. Each microcolony was placed in a glass box (10 × 15 × 9 cm) with 
walls coated with Fluon plus (Bioquip, USA). The workers were left undisturbed for 90 
minutes to adapt to the new environment. Then video recordings of the one-hour basal 
period were taken. Next, the microcolonies assigned to spore treatment were sprayed 
with approximately 400 µl of the spore suspension evenly distributed between fungus 
and workers. Simultaneously, Control microcolonies were sprayed with 400 µl of water. 
Immediately after the treatment was applied, the activity of each microcolony was video 
recorded for 2 hours. The recordings were acquired with a GoPro Hero 5 Black edition 
(GoPro, USA) camera coupled with a macro lens (PolarPro, USA) at 60 photograms 
per second and 1080 megapixels. At the end of the video recording, the 15 ants of each 
microcolony were transferred to Petri dishes and given an agar diet (Bueno et al. 1997). 
The infrabuccal pellets produced by the workers were counted after 24 hours (Fig. 1A).

The video recordings obtained from each microcolony for the basal period and the 
two hours after treatment were divided into 10-minute segments. For each of these 
segments, three minutes of footage were randomly selected to record the behavior of 
ten workers. The workers were digitally labeled to score the time spent for each one of 
them in the execution of five hygienic behaviors associated with collective immunity: 
self-grooming, allogrooming, fecal fluid grooming, fungus grooming, and metapleural 
gland grooming, defined according to the literature as follows:
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Self-grooming

The antennae are pulled through the antenna cleaners on the front legs, then the ant 
cleans the legs and the antenna cleaners, by pulling the legs through the mouthparts, 
removing particles with the glossa (Nilsson-Møller et al. 2018).

Allogrooming

One or more grooming ants approached a recipient worker. The antennae of the 
grooming ants are pointed towards a specific point of the receiving ant or are moving 
and lightly tapping the receiver. The maxillae and lower labium mouthparts are open, 
with the glossa emerging to lick the receiver ant (Nilsson-Møller et al. 2018).

Fungus grooming

The ant stops leg movements at a fixed point on the fungus garden. The antennae are 
motionless and parallel pointed towards the mutualistic fungus, and the tip of the an-
tennae are almost touching each other, close to the tips of the mandibles. The maxillae 
and lower labium mouthparts are open, with the glossa emerging to lick the fungus 
(Currie and Stuart 2001; Nilsson-Møller et al. 2018).

Figure 1. Description of A. Experimental design and B. Video recording analysis used to assess the be-
havioral response of Atta cephalotes workers to M. anisopliae
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Metapleural gland grooming

The ant leans to one side to reach one of its front legs to rub the meatus of the meta-
pleural gland. The other front leg is simultaneously licked by the glossa. The ant leans 
to the opposite side and switches legs and repeats the same motion with the opposite 
legs. (Fernández-Marín et al. 2006; Nilsson-Møller et al. 2018).

Fecal fluid grooming

The ant bends its gaster and head towards each other to apply a droplet of fecal fluid 
to the mouthparts. the ant pulls the front legs through the mandibles, one at a time. 
Subsequently, the ant moves the antennae through the antenna cleaners located on the 
tibia-tarsus joint of the front legs (Nilsson-Møller et al. 2018).

This procedure was repeated until the observation was completed for ten labeled 
workers in each segment of three minutes. Finally, the video recordings were analyzed 
independently by two observers blinded to the treatments. (Fig. 1B).

Experiment 2: Worker’s survival and colonization by M. anisopliae

The pathogenicity of the M. anisopliae strain was confirmed by assessing the percentage 
of colonization. Here, four colonies were chosen to extract 60 individuals that were 
randomly assigned to a challenge either with water or a spore suspension. After the 
challenge, workers were transferred to sterile Petri dishes with diet agar in groups of 
10 ants. The number of living workers was recorded every 24 hours for ten days. The 
dead ants were then removed and disinfected in sodium hypochlorite (0.7%) solution 
followed by three washes with sterile water. Finally, the corpses were transferred to Petri 
dishes lined with absorbent paper moistened with sterile water. After five days of incu-
bation, the corpses were assessed under a stereomicroscope SMZ-745 (Nikon, Japan) 
to determine colonization by detecting mycelial growth from inside the intersegmental 
sections (Moino Jr et al. 2002).

Experiment 3: Gene expression associated with innate immunity in workers

To evaluate gene expression, 12 microcolonies from three nests were selected. The 
microcolonies were composed of 100 medium workers and 5 g of mutualistic fungus. 
Six microcolonies were randomly assigned to the challenge with spore suspension, 
and six microcolonies were assigned to a sterile water control. Each microcolony was 
placed on a glass box, and the corresponding treatment was applied. Twenty ants per 
microcolony were collected before and at 24, 48, and 72 hours after applying the chal-
lenge. An additional sample of 20 workers challenged with M. anisopliae was collected 
to assess the efficiency of the primers at 24 h. The collected ants were kept in liquid 
nitrogen until RNA isolation.
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RNA extraction and relative gene expression

The RNA extractions were performed using the SV Total RNA Isolation System (Pro-
mega, USA) following the manufacturer’s instructions. The RNA quantity and integ-
rity were assessed by agarose gel (2%) electrophoresis and analysis with a NanodropTM 
spectrophotometer (ThermoFisher, USA). The RNA extracted from the ants was re-
verse transcribed with cDNA synthesis kit ProtoScript First Strand cDNA Synthesis 
(New England Biolabs, USA).

The RNA extractions were carried out using the SV Total RNA Isolation System 
(Promega, USA) following the manufacturer’s instructions. The RNA quantity and 
integrity were assessed with agarose gel (2%) electrophoresis and NanodropTM spectro-
photometer analysis (ThermoFisher, USA). The RNA extracted from the ants was re-
verse transcribed with a cDNA synthesis kit (ProtoScript First Strand cDNA Synthesis; 
New England Biolabs, USA).

Previously reported primers were used for abaecin and ribosomal protein L18 
(rpL18) (Chérasse et al. 2018). For the defensin and NADH dehydrogenase (NADH), 
primers were designed by Primer-BLAST (NCBI) using A. cephalotes-specific se-
quences available in the Gen Bank (NCBI) for defensin (BK008405.1) and NADH 
(XM_012205180.1). The primers were designed to span an exon-exon junction, thus 
avoiding the amplification of the contaminating genomic DNA (Table 1).

Table 1. List of the specific primers used for expression assays.

Gene Primer name Sequence (5’-3’) Amplicon size (bp) Efficiency (%) Reference
abaecin Aba-f ATCTTCACTCTGCTCTTGGC 156 103 Chérasse et al. 2018

AbaM-r AATGAGGAAATCTGATCTTCGG
defensin DG2-f TGAAGCTGTTCGCTATCCTCG 112 90 This study

DG2-r GGATCCTCGATGGTAGTCAGTTC
ribosomal protein 
(rpL18)

CRL18-f TCCCCAAGTTGACGGTATG 140 97 Chérasse et al. 2018
CRL18M-r TCCCTGCATCAAGACTGTAC

NADH NAC1-f AGAGCAGATGGATCTCGACG 122 100 This study
NAC1-r AATTCGAAGTTGGGACCCTCA

Quantitative PCR was carried out in a CFX96 Touch Real-Time PCR Detection 
System (Bio-Rad, USA) with a reaction mix containing 4 µl of cDNA, 5 µl de 2 × SsoFast 
EvaGreen (Bio-Rad, USA), and 0.5 µl of each primer (10 µM). The amplification 
conditions were 95 °C for 3 min followed by 40 cycles at 95 °C for 15 s and 60 °C for 
30 s; melt curves were run after 40 amplification cycles while increasing the temperature 
from 60 to 95 °C; each sample was assessed in duplicate. A no templated control was 
included as a negative control for each primer.

The primer’s efficiencies were determined using standard curves as previously de-
scribed (Pfaffl 2001; Moreira et al. 2017). The efficiencies (E) and the mean Ct (threshold 
cycle) were used to calculate relative expression (RE) of gene targets abaecin and defensin 
compared to housekeeping genes rpL18 and NADH equation 1 (Chérasse et al. 2018):

http://www.ncbi.nlm.nih.gov/nuccore/BK008405.1
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RE =
( ) ( )

( )  (1)

The fold change in expression of each target at different time points was estimated by 
dividing the relative expression values at 24, 48, and 72 h by the relative expression at 0 h.

Statistical analyses

All the statistical analyses were performed using R version 4.0.2 (Core-Team 2020)
The consistency of the observations recorded by the observers was contrasted while 

calculating a two-way mixed-effects intraclass coefficient (ICC) using the psych pack-
age (Revelle 2022). The time spent by all the workers in a microcolony in each hy-
gienic behavior was summed for the basal period, the first hour, and the second hour 
post-challenge. The resulting data were log10 transformed to satisfy the assumptions of 
normality and homoscedasticity. Independent mixed linear models were calculated for 
each behavior using the nlme package (Pinheiro and Bates 2022). For the time spent 
in self-grooming, allogrooming, fecal fluid grooming, and fungus grooming, the fixed 
factors were: (i) treatment (spraying with water or infection with M. anisopliae spores), 
(ii) time (baseline period, the first and second hours after the application of the chal-
lenge), and (iii) the interaction between time and treatment. For the variable produc-
tion of infrabucal granules, treatment was set as the only fixed factor was the treatment. 
The nest was set as a random factor for all models.

The impact of treatment on worker survival was assessed via Cox regression using 
the Survival package (Therneau and Grambsch 2000; Therneau 2022). The treatment 
(M. anisopliae challenge or control challenge), nest, and interaction between treatment 
and nest were considered fixed effects.

The fold change in the expression of antimicrobial peptides, abaecin, and defensin 
was logarithmic transformed (log10), and independent linear mixed models were calcu-
lated. The treatment (M. anisopliae challenge or control challenge), time (24, 48, and 
72 h), and interaction between treatment and time were considered fixed factors. The 
nest was considered as a random effect.

The Anova function of the CAR package (Fox and Weisberg 2018) was used in all 
models calculated to evaluate whether the fixed factors affected the response variables. 
Tukey’s multiple comparisons were performed using the multcomp package when fixed 
factors significantly affected the response variable (Hothorn et al. 2016).

Results

The ICC was 0.76, thus suggesting that the behavioral observations were consistent 
between observers. Self-grooming was a behavior in which workers invested more time 
before and after the application of challenges. In the basal status, workers spent a median 
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of 1000 seconds dedicated to self-grooming; the investment in fungus grooming was 
seen for a median of 160 s; the time invested in allogrooming and fecal fluid grooming 
was under 100 s (Fig. 2 A–D). The metapleural gland grooming was detected only once 
in the 5440 s of footage; hence, the time invested in this behavior is negligible.

Workers reacted to the treatments by increasing their investment in self-grooming: 
However, the time after challenge (F = 49.54, p < 0.0001, Df 9)—but not the nature 
of the treatment itself (F = 0.66, p = 0.4, Df 9)—influenced their behavior. In the first 
hour after the challenge, workers duplicated the time investment in self-grooming be-
havior (Tukey test p < 0.0001). The time investment in self grooming decreased in the 
second hour, but it was higher than in the basal status (Tukey test p < 0.0001) (Fig. 2A).

A similar tendency was observed for the time invested in allogrooming. Workers 
increased the time investment in this behavior depending on the time after the treat-

Figure 2. Time invested by Atta cephalotes workers in prophylactic behavior during the basal period (0 h) 
the first hour, and the second hour after challenge with water (white boxes) or Metarizhium anisopliae 
spores (gray boxes) A self-grooming B allogrooming C fungus grooming, and D fecal fluid grooming. 
Each box represents the sum of the time in seconds invested in each behavior from 10 workers (n = 5 nests, 
60 workers per nest). Different letters indicate significant differences (p < 0.05).
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ment (F = 6.32, p = 0.0028, Df 9) no matter whether they were challenged with water 
or M. anisopliae conidia (F = 0.16; p = 0.68, Df 9) (Fig. 2B). Workers almost dupli-
cated the time invested in allogrooming in the first hour after challenges. This variable 
returned to basal levels in the second hour (Tukey test p = 0.83).

Workers showed a significant reduction in the time invested in fungus grooming 
after challenge (F = 6.4, p < 0.0026, Df 9) independent of whether they were chal-
lenged with water or spores (F = 0.78, p < 0 .37, Df 9) (Fig. 2C). In the first hour after 
the challenge, workers reduced the time investment in fungus grooming by approxi-
mately 60% (Tukey test p = 0.0228). This reduction was maintained in the second 
hour after treatment (Tukey test p = 0.010). In contrast, workers did not modify the 
time invested in fecal fluid grooming after the challenge neither in response to the time 
after treatment (F = 2.02, p = 0.16, Df 9) nor to nature of the treatment (F = 0.54, 
p = 0.58, Df 9) (Fig. 2D). Finally, workers treated with M. anisopliae showed ten-fold 
more infrabuccal pellets than control workers treated with water 24 h after the chal-
lenge (F = 124.80, p < 0.0001) (Fig. 3).

The workers’ survival decreased progressively in control-treated workers and 
workers treated with spores over the ten-day observation period. However, the 
workers treated with M. anisopliae spores showed higher mortality from day four 
than workers treated with water (z = 2.80, p = 0 .005) (Fig. 4). Furthermore, the 
colonization assay showed that 80% of worker’s corpses were effectively colonized 
by M. anisopliae; no signs of colonization were observed in water-treated workers 
(data not shown).

The expression of abaecin was affected by treatment (F = 6.2, p = 0.03). Workers 
treated with M. anisopliae showed an increase in the expression of abaecin as early as 

Figure 3. Production of infrabuccal pellets 24 hours after control challenge with water or spores of 
Metarhizium anisopliae. (n = 5 nests, 60 workers assessed per nest). Significant differences are marked with 
asterisks (* p < 0.05, ** p < 0.01, *** p < 0.001).
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24 h after the challenge. The expression of abaecin increased by nearly 200-fold at 
48 h versus immediately after the challenge (Fig. 5A). In contrast, the expression of 
abaecin remained similar across time points in workers treated with water. The expres-
sion of defensin increased at 48 h after the challenge in workers treated with a spore 
suspension; however, no significant differences were detected versus expression before 
treatment (Fig. 5B).

Discussion

The results indicated that under laboratory conditions, A. cephalotes workers reacted 
to a potential hazard by increasing their time investment in self-grooming and allog-
rooming and reducing their interaction with the fungus. These hygienic behaviors were 
complemented by the production of infrabuccal pellets. However, the results suggest 
that workers could not discriminate an innocuous challenge from an actual hazard. 
Hence, the time invested in hygienic behaviors was similar between workers treated 
with water and workers treated with spores of M. anisopliae. Furthermore, workers 
were unable to clear the spores completely under this experimental setup—the invader 
reached the hemocoel triggering a rise in the expression of abaecin. Finally, infection 
with M. anisopliae decreased the workers’ survival.

Figure 4. The survival probability of Atta cephalotes workers upon control challenge with water (blue 
line) or spores of Metarhizium anisopliae (black line). Blue and black dashed lines represent the 95% 
confidence interval. n = 4 nests with 60 workers assessed per nest.
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Workers of A. cephalotes combined self-grooming and allogrooming to remove the 
contaminants applied directly to their bodies, thus suggesting that this is the first line 
of defense against a potential hazard. Self-grooming has been identified as a proactive 
behavior widely extended in social insects including ants, wasps (Sumana and Starks 
2004), bees (Morfin et al. 2020), and termites (Yanagawa et al. 2008). In leafcutter 
ants, this behavior is deployed by several species in response to challenges applied 
directly to the workers and to those applied to the mutualist fungi (Wilson 1976; 
Wheeler 1984; Morelos-Juárez et al. 2010; Reber et al. 2011; Walker and Hughes 
2011; Bos et al. 2012; Nilsson-Møller et al. 2018; Bos et al. 2019), thus suggesting the 
relevance of this behavior to remove contaminants.

Allogrooming complements self-grooming hence allowing two or more individu-
als to clean the body of a third party in places that this one cannot reach, thus clearing 
potential hazards (Hughes et al. 2002; Reber et al. 2011). However, the time invest-
ment in self-grooming was 10-fold higher than the time invested in allogrooming. 
The difference in the time investment between those behaviors is probably explained 
because allogrooming depends on the proportion of clean and contaminated workers. 
In carpenter and leaf-cutting ants, if the treatment is applied simultaneously to the ma-
jority of individuals in a group, then the investment in this behavior decreases versus 
the investment observed when there is a proportion of clean workers (Bos et al. 2012; 
Da Silva Camargo et al. 2017). In this situation, clean workers dedicate time to clean 
other workers in the group.

The workers did not alter the investment in fecal fluid grooming, thus suggesting 
that this behavior is not deployed in response to challenges with water or M. anisopliae. 
In agreement with those findings, Ac. echinatior workers perform fecal fluid grooming 
to prepare plant material for degradation in (Kooij et al. 2016). Similarly, fecal fluid 

Figure 5. Expression of antimicrobial peptides in workers of Atta cephalotes upon challenge with water 
(white boxes) or spores of Metharhizium anisopliae (gray boxes) A abaecin B defensin. n = 3 nests; 20 
workers assessed per time point. Significative differences are marked with asterisks (* p < 0.05, ** p < 0.01, 
*** p < 0.001).
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grooming is performed by Ac. octospinosus minor workers when they incorporate plant 
material into the mutualist garden (Forti et al. 2020), and also by workers that make 
contact with the mutualist (Nilsson-Møller et al. 2018). Finally, it has been observed 
in foundress queens of Ac. octospinosus during the preparation of plant material to in-
corporate into the fungus garden (Fernández-Marín et al. 2003).

The deployment of hygienic behaviors led to the production of infrabuccal gran-
ules. An increase in infrabuccal pellet production has been previously described in 
Acromyrmex and Tachymirmex workers after exposure to Escovopsis and Penicillium 
(Fernández-Marín et al. 2006; Little et al. 2006). In line with these findings, the in-
frabuccal pocket has been described as a structure that compacts and possibly sterilizes 
the material removed by the workers during hygiene (Little et al. 2006). Furthermore, 
the final disposition of the pellets in the waste chambers helps isolate the potential 
hazard, thus protecting the workers and the fungus garden from further contamination 
(Currie and Stuart 2001; Little et al. 2003).

Atta cephalotes workers respond to the challenges applied in this study by modifying 
the time invested in the hygienic behaviors, but they could not produce a differential 
response between an innocuous challenge and an actual threat with an entomopatho-
gen. This finding contrasts with previous reports, which show that leaf-cutting ants de-
ploy a differential response against innocuous substances like talc and an actual threat 
(Fernández-Marín et al. 2006; Morelos-Juárez et al. 2010; Yek et al. 2013; Tranter et 
al. 2015; Nilsson-Møller et al. 2018). This finding cannot be attributed to the innocu-
ity of the strain of M. anisopliae because the colonization assay and the survival curve 
showed that the strain of M. anisopliae has a virulence mechanism that allows it to 
reach the hemocoel of its host and significantly impacts its viability.

It is also possible that the application of the entomopathogen as a suspension of 
spores hinders the detection of specific cues by the workers. Although the mechanism 
that mediates the recognition of hazards in leaf-cutting is not well understood, micro-
organisms might release semiochemicals, volatile compounds detected by ants as cues 
of danger, thus triggering a prophylactic response (Davis et al. 2013; Goes et al. 2020). 
Thus, it is possible that those semiochemicals are diluted in suspension, thus hinder-
ing workers from detecting the threat. In this line of evidence, similar to the findings 
reported here, workers of Atta colombica did not generate a differential response to a 
suspension of spores of M. anisopliae and a challenge with a solution of detergent in 
water (Walker and Hughes 2011). Furthermore, workers of Formica selysi challenged 
with different concentrations of a suspension of Metarhizium bruneum spores at a 
concentration of 107 equivalent to the one used in this study workers produced a re-
sponse similar to the one observed in control. In contrast, they deployed a differential 
response when they were challenged with a concentration of 108 spores/ml (Reber et 
al. 2011), thus supporting the idea that the concentration of the microorganisms is es-
sential to its recognition and the scaling of the behavioral response against it.

Workers of A. cephalotes did not deploy the grooming of the metapleural gland in 
response to the challenge with M. anisopliae. This evidence is in contrast with a previ-
ous report showing that A. cephalotes workers increase the frequency of this behavior 
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up to 150 times in response to a challenge with dry spores of Penicillium. This indicates 
that this is the primary mechanism of response against fungal threats among A. cepha-
lotes (Fernández-Marín et al. 2006). The differences between these findings can be 
explained by the strategy used to deliver the challenge to the workers. Dry spores may 
elicit metapleural gland grooming because they are easily detected by ants whereas the 
cues released by the microorganisms are diluted in suspension, thus hindering recog-
nition. Nevertheless, among workers of Ac.echinatior, the inoculation of the fungus 
garden with dry Escovopsis spores did not increase the frequency of metapleural groom-
ing thus indicating that another factor is necessary to trigger this behavior (Nilsson-
Møller et al. 2018). Recently, Tachymirmex workers have been shown to increase the 
frequency of metapleural gland grooming upon challenge with germinated spores of 
Metarhizium and Escovopsis versus the challenge with ungerminated conidia, thus sug-
gesting that the status of the microorganisms also influences the workers’ response 
(Bonadies et al. 2019).

The evidence shows that although treatment with M .anisopliae spores, significant-
ly impacts workers’ viability, the treatment with water also caused a reduction in this 
parameter. Previously, it has been shown that A. cephalotes workers lose viability when 
isolated on Petri dishes, even when left untreated (Valencia-Giraldo et al. 2021), pos-
sibly because they do not consume the agar diet. In contrast, colonies maintain their 
viability under laboratory conditions six weeks after the extraction (Valencia-Giraldo, 
personal observation). These findings suggest that experimental conditions may alter 
the health status of workers. Hence it cannot be ruled out that this factor may influ-
ence workers’ behavior avoiding the discrimination between a sham challenge and the 
challenge with an entomopathogen.

In terms of individual immunity, evidence shows that workers of A. cephalotes 
increase the expression of the antimicrobial peptide abaecin. The peak in the expres-
sion of abaecin at 48 h is consistent with the dynamics of invasion of M. anisopliae, 
which reaches the hemocoel between 24 and 48 h after hosts exposure (Moino Jr et al. 
2002). In insect hosts, abaecin has shown antibacterial activity (Casteels et al. 1990; 
Otvos 2002; Rahnamaeian et al. 2015). However, the expression of this AMP in re-
sponse to fungal infection has also been reported in Apis mellifera (Bull et al. 2012) 
and Ac. echinatior (Yek et al. 2013) suggesting that this peptide might protect against 
M. anisopliae.

In contrast, the expression of defensin was not altered in response to infection 
with M. anisopliae. This finding contrasts with evidence showing that expression of 
defensin in response to infection with M. anisopliae is increased in social insects includ-
ing A. mellifera (Bull et al. 2012) and Lasius neglectus (Konrad et al. 2012) as well as 
in solitary insects like Aedes aegypti and Locusta migratoria (Cabral et al. 2020; Jiang 
et al. 2020). This finding may be explained by reducing genes related to individual 
immunity observed in A. cephalotes (Suen et al. 2011). However, the IMD and toll 
pathway genes responsible for the signaling transduction that lead to defensin expres-
sion and are functional in this species (Schlüns and Crozier 2007; Suen et al. 2011). 
Therefore, the explanation for the low defensin expression during the Metarhizium 
challenge remains unclear.
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Conclusion

The results show for the first time that A. cephalotes workers deploy mechanisms of 
collective and individual immunity upon challenge with M. anisopliae spores. Under 
this particular experimental setup A. cephalotes workers cannot discriminate between 
a hazardous stimulus and an innocuous one; hence, they deploy a generic behavioral 
response independent of the level of threat posed by the challenge. In contrast, once 
M. anisopliae reaches the hemocoel, individual immunity recognizes the danger and 
triggers the expression of abaecin, possibly as a defense mechanism against the invader.
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