Short Communication |
Corresponding author: Ferenc Báthori ( ferenc.bathori@gmail.com ) Academic editor: Petr Klimeš
© 2017 Ferenc Báthori, Walter P. Pfliegler, Carl-Ulrich Zimmerman, András Tartally.
This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Citation:
Báthori F, Pfliegler WP, Zimmerman C-U, Tartally A (2017) Online image databases as multi-purpose resources: discovery of a new host ant of Rickia wasmannii Cavara (Ascomycota, Laboulbeniales) by screening AntWeb.org. Journal of Hymenoptera Research 61: 85-94. https://doi.org/10.3897/jhr.61.20255
|
Public awareness has been raised on the importance of natural history and academic collections for science and society in a time when reduced financial support and staff cuts are prevalent. In the field of biology, new species and new interspecies associations are constantly discovered by making use of museum collections, digitalised materials or citizen science programs. In our study, the Myrmica Latreille, 1804 image collection of AntWeb.org was screened for fungal ectoparasites. A total of 397 imaged specimens from 133 species were visually investigated. A single specimen of M. hellenica Finzi, 1926, collected in Greece by U. Sahlberg, showed a conspicuous fungal infection. The parasite was identified using microscopic methods as Rickia wasmannii Cavara, an ectoparasitic fungal species specialised to Myrmica ants. This finding represents a new country record and a new Myrmica species for the host spectrum of R. wasmannii. According to our results, online entomological databases can be screened relatively easily for ectoparasitic fungal infections from new hosts and new regions. However, depending on quality of the insect voucher photos, additional investigation of the material could be needed to confirm the identity of the parasite.
Biological collections, database, Myrmica hellenica , distribution, Greece
Natural history collections have served as the fundament of taxonomic and biogeographical research over centuries. These biological collections could be important to reveal new geographical distributions of several species (
Natural history collections experienced a decline in funding in the last decade with growing concern over the vast potential of biological information waiting to be uncovered from these resources (
In the present study, we extend our previous work by screening preserved ant specimens for fungal ectoparasites utilizing the AntWeb website, currently the world’s largest online database of images, specimen records, and natural history information on ants (
To survey R. wasmannii infections, all the specimens in the genus Myrmica (workers, males, and queens) digitized in the online database of AntWeb.org were examined. Based on their current statistics (ver. 6.58), 594,399 specimen records and 199,352 total specimen images can be found in this online database from all over the world. In the case of the genus Myrmica, 263 species are present in the database, but only 133 species have imaged specimens. In total 397 specimens of these Myrmica spp. (44 queens, 30 males, 323 workers) are represented in the database with 1823 photographs (1409 if images of specimen labels are excluded), originating from Europe, Africa, Asia and North America (see Supplementary file 1). Eleven specimens were not identified to species level and one specimen (FOCOL0709) was misplaced.
We examined all the available images of the genus via opening each in a web browser. Identifying imaged specimens as being infected was based on the comparison with specimens in our collection of dried infected Myrmica ants. The thalli of R. wasmannii are relatively easy to identify on the basis of their morphology (
As described previously (e.g.
From the infected host material identified during the survey, a single thallus (Fig.
Photograph of a slide-mounted Rickia wasmannii thallus (deposition number: G00562301) from Myrmica hellenica host, recorded on the AntWeb (specimen: CASENT0907653).
Most of the 397 examined Myrmica spp. specimens were represented by multiple photographs showing the ants from different angles in the AntWeb database. Due to the presence of important taxonomic characters, the head was imaged for all specimens. This is advantageous property of the database for our work, as the number of thalli is usually the highest on the head (
We have identified a conspicuously infected M. hellenica Finzi, 1926 worker (Photo by Zach Lieberman, https://www.antweb.org/bigPicture.do?name=casent0907653&shot=h&number=1; Image: AntWeb 2002–
The single unequivocally infected specimen identified by us was collected in Greece, thus it represents a new country record and simultaneously a new host species for the fungus. The collection data of the specimen is as follows: Greece: Patras (approx. 38°14'47"N, 21°44'4"E), collected by U. Sahlberg. The fungal thalli covered the ant’s head and body in high density. No other specimens with the same collection data were available in AntWeb. Further specimens of the host, M. hellenica, collected in Northern Greece and Iran were present in the database, but these were not photographed or did not show infection, respectively.
With our new record, the number of countries this fungus is recorded in is now increased from 17 to 18: Spain, France, Great Britain, Belgium, Netherland, Luxembourg, Germany, Switzerland, Austria, Italy, Czech Republic, Slovakia, Poland, Hungary, Romania, Slovenia, Bulgaria (
Our observations have proven that online image databases can be exploited to record parasitic infections, extend the distribution and host spectrum of parasitic species, thereby supplementing the direct examination of specimens in non-digitized collections. Making more high-quality micrographs and SEM images (see:
Dorsal (A), head (B) and profile (C) view of the Rickia wasmannii infected Myrmica hellenica worker, recorded on AntWeb (specimen: CASENT0907653), arrows indicate some clearly identifiable R. wasmannii thalli.
Our results highlight the possibility of using digitized collections to uncover host-parasite associations. The study of insect-Laboulbeniales associations have recently also benefited from the use of digital photo- and biological observation sharing websites (Flickr and iNaturalist; Haelewaters et al. 2016), further emphasising the new possibilities and non-trivial uses of resources in the digital era.
We express our gratitude to the curators and photographers of AntWeb for providing this outstanding resource for the myrmecologist community. We are grateful to Danny Haelewaters and Alexander Wild for revising the manuscript and to Erika Mirkó for linguistic corrections. We also thank Bernard Landry (Muséum d’histoire naturelle, Genève) for removing and sending a fungal sample for identification and Philippe Clerc (Conservatoire et Jardin botaniques, Genève) for depositing the mounted thallus. AT was supported by the ‘AntLab’ Marie Curie Career Integration Grant, part the 7th European Community Framework Programme, and by a ‘Bolyai János’ scholarship of the Hungarian Academy of Sciences (MTA). WPP was supported through the ÚNKP-16-4-IV New National Excellence Program of the Ministry of Human Capacities of Hungary. The research has been supported by the EFOP-3.6.1-16-2016-00022 project. The project is co-financed by the European Union and the European Social Fund.
Online image databases as multi-purpose resources: Rickia wasmannii Cavara (Ascomycota, Laboulbeniales) on a new host ant from a new country by screening AntWeb.org
Data type: occurence