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Abstract
Ant venoms are complex cocktails of toxins employed to subdue prey and to protect the colony from 
predators and microbial pathogens. Although the extent of ant venom peptide diversity remains largely 
unexplored, previous studies have revealed the presence of numerous bioactive peptides in most stinging 
ant venoms. We investigated the venom peptidome of the ponerine ant Odontomachus haematodus using 
LC-MS analysis and then verified whether the division of labor in the colonies and their geographical loca-
tion are correlated with differences in venom composition. Our results reveal that O. haematodus venom 
is comprised of 105 small linear peptides. The venom composition does not vary between the different 
castes (i.e., nurses, foragers and queens), but an intraspecific variation in peptide content was observed, 
particularly when the colonies are separated by large distances. Geographical variation appears to increase 
the venom peptide repertoire of this ant species, demonstrating its intraspecific venom plasticity.
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Introduction

Due to their ubiquity in terrestrial environments, ants are amongst the most abundant 
venomous animals on Earth; for instance, they represent 15-20% of the animal bio-
mass in tropical forests (Hölldobler and Wilson 1990). Among ants, ca. 9100 species 
belonging to 16 subfamilies possess a stinging apparatus, while other subfamilies have 
lost their ability to sting (Hölldobler and Wilson 1990). Ant venoms contain a variety 
of toxins that paralyze prey, ward off predators and protect the colony against micro-
bial pathogens (Orivel et al. 2001; Schmidt 1982). As they have been little studied, 
ant venom peptides represent a potentially promising source of bioactive molecules 
with novel scaffolds and original pharmacological activities. Previous studies (Aili et al. 
2014; Touchard et al. 2014; Touchard et al. 2015) have demonstrated that the venoms 
of stinging ants are mostly comprised of small peptides, similarly to spider, scorpion 
and cone snail venoms. A limited number of peptidic toxins from several ant subfami-
lies such as the Ponerinae (Cologna et al. 2013; Johnson et al. 2010; Orivel et al. 2001), 
Paraponerinae (Piek et al. 1991), Ectatomminae (Arseniev et al. 1994; Pluzhnikov et 
al. 2000), Myrmicinae (Rifflet et al. 2012), Myrmeciinae (Inagaki et al. 2004; Inagaki 
et al. 2008) and Pseudomyrmecinae (Pan and Hink 2000) have been characterized.

One of the major issues in the biochemical and pharmacological study of venoms is 
the reproducibility of studies conducted on field-collected samples, which requires accu-
rate species identification. We have previously demonstrated that, at the species level, the 
peptidic fingerprints of ant venoms are reliable chemotaxonomic markers for species de-
termination and may possibly allow the discrimination of unresolved species complexes 
(Touchard et al. 2014). However, intraspecific variations can also occur as shown recent-
ly in Dinoponera quadriceps for which only 48 peptides were shared between colonies out 
of the more than 300 peptides found in total (Cologna et al. 2013). Also, intraspecific 
variations in venom composition have been observed in snakes, scorpions, tarantulas 
and cone snails, this variation being linked to geographical distribution (Núñez et al. 
2009; Shashidharamurthy et al. 2002), age (Escoubas et al. 2002) or sex (Escoubas et 
al. 1997; Herzig and Hodgson 2009; Herzig et al. 2002; Herzig et al. 2008). However, 
it remains unclear whether such variation is a common denominator for all venomous 
animals or is restricted to some taxa or species. This key point is still a subject of de-
bate amongst specialists, since venom sampling conditions are often limiting and broad 
species-wide surveys of venom composition have been difficult to conduct.

In ants as in all hymenopterans, only females are venomous, so that sex cannot 
account for venom variation. Therefore, intraspecific variations in venom composition 
could be related to geographical distribution, diet, age or division of labor (polye-
thism). In most ant species, reproduction is carried out by the queen(s), while all other 
tasks are performed by the workers for whom the division of labor is based on physical 
caste (there is polymorphism in the worker caste) or, most often, age (Fresneau 1994). 
Usually, the youngest workers are involved in intranidal activities, whereas older work-
ers are assigned to tasks outside the nest such as defense and foraging (da Silva-Melo 
and Giannotti 2012; Sendova-Franks and Franks 1999; Wilson 1963).
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As venom is mostly used by workers performing extranidal activities, one can hy-
pothesize that polyethism could affect venom composition. To test this hypothesis, 
we investigated both intracolonial and intercolonial variations in venom composition 
in the Neotropical ponerine species, Odontomachus haematodus. The monomorphic 
workers of this species possess a peptide-rich venom (Touchard et al. 2014) used in 
colony defense and prey capture. To assess possible venom variations, we characterized 
the entire venom peptidome by combining HPLC chromatographic separation with 
offline MALDI-TOF mass spectrometry analysis and explored the putative differences 
in venom composition between castes and type of activity (i.e., queens, and worker 
nurses and foragers) as well as colonies from different geographical locations via the 
comparison of their venom peptidic fingerprints.

Materials and methods

2.1. Ant collection and taxonomy

Odontomachus haematodus colonies were collected from three different areas in French 
Guiana: six colonies were collected on the Campus Agronomique, Kourou; three in Sin-
namary; and one in Angoulême (Fig. 1). In the laboratory, the ant colonies were conserved 
in artificial nests made of plastic boxes (11 cm × 11 cm × 6 cm) filled with 2 cm of molded 
plaster to create chambers and covered by a plate of red glass. These boxes were connected 
to a foraging arena consisting of a second, similar plastic box without plaster. The colonies 
were kept at 25 °C and provided with dead mealworms and honey twice a week.

Voucher specimens wer1e deposited in the Laboratorio de Mirmecologia, Cocoa 
Research Centre, Ilhéus, Bahia, Brazil.

2.2. Behavioral observations and ant groups

To investigate the division of labor, workers were individually marked with different 
colored dots of paint on their thoraxes and gasters. Worker tasks were determined by 
scan sampling their behavior (three scans per day at 9:00 am, 2:00 pm and 5:00 pm; 
5 days per week over 3 weeks). The percentage of presence in the foraging area for 
each individual over the 3-week period was calculated to define the behavioral groups. 
Workers that had either never been seen in the foraging area or were there between 0% 
to 25% of the time were considered nurses ([group 0%] and [group 25%], respective-
ly). Those observed between 25% to 50% of the time in the foraging area were consid-
ered intermediates [group 50%], and those observed between 50% to 75% or between 
75% to 100% of the time in the foraging area were considered foragers ([group 75%] 
and [group 100%], respectively). Moreover, winged females present in the colonies 
were named “virgin queens” in order to differentiate them from “reproductive queens” 
devoid of wings (see Fig. 1).
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2.3. Venom analysis

Ants were killed by freezing at -20 °C prior to dissecting their venom glands. The dis-
sected venom glands were placed in 10% acetonitrile (ACN)/water (v/v), centrifuged 
for 5 min at 14,400 rpm and the supernatant was collected and lyophilized prior to 
storage at -20 °C for subsequent biochemical analysis. To study intra-colonial varia-
tions and the influence of the role of individual ants in the colony, five venom glands 
from each behavioral group (cf. Fig. 1) were dissected and pooled for each colony. 
Furthermore, 100 venom glands from the workers of one colony (Kou06; 3.55 mg of 
dry crude venom in total) were dissected to carry out an in-depth exploration of the 
whole venom by LC-MS.

Figure 1. Sites where the 10 Odontomachus haematodus colonies were collected in French Guiana. Table 
panels show information about each colony, including GPS coordinates, colony code and the different be-
havioral groups. One hundred dissected workers from colony Kou06 were used for LC-MS investigation.
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2.4. Chromatographic separation

In order to fully explore the Odontomachus haematodus peptidome, a venom sample 
pooled from 100 workers was fractionated by reversed-phase high performance liquid 
chromatography (RP-HPLC) on a Waters Xterra-C18 5µm, 2.1 × 100 mm column 
with an Agilent HP 1100 HPLC system. Fractionation was achieved using a gradient 
of solvent A (water / 0.1% trifluoroacetic acid TFA) and solvent B (ACN / 0.1% TFA). 
The percentage of solvent B was modified at a flow rate of 0.3 mL/min as follows: 0% 
for 5 min, 0-60% for 60 min, 60-90% for 10 min and 90-0% for 15 min. The absorb-
ance of the column effluent was monitored at 215 nm on a diode-array detector. The 
signal was monitored in real time, and fractions were collected manually for each elut-
ing peak. Individual fractions were then dried and reconstituted in 50µL of water/0.1% 
TFA for subsequent off-line MALDI-TOF MS analysis and disulfide bond reduction.

2.5. Chemical reduction of disulfide bonds

To map the distribution of disulfide-linked peptides in the venom, 5µL of each fraction 
were incubated in 10µL of a reducing buffer (100 mM Tris, pH 8, 6M guanidine) with 
10 mM dithiothreitol (DTT) for 1h at 56 °C in the dark. The reaction was stopped by 
the addition of 5µL of water / TFA 0.1%. Prior to mass spectrometry analysis, reduced 
fractions were desalted using Ziptip® C18 (Millipore) pipette tips. As the chemical 
reduction of disulfide bonds results in a mass increase of 2 Da for each bond, compar-
ing mass shifts between native and reduced venom fractions allowed the presence of 
disulfide-linked peptides and the number of disulfide bonds for each to be compared.

2.6. Mass spectrometry analysis

Mass spectrometry analyses were performed on a Voyager DE-Pro MALDI-TOF mass 
spectrometer (Applied Biosystems; CA, USA) using α-cyano-4-hydroxycinnamic acid 
(CHCA) matrix dissolved at 5 mg/mL in water/ACN/TFA (50/50/0.1 v/v/v). Prior 
to MS analysis, crude venoms were desalted using Ziptip® C18 (Millipore) pipette 
tips. Then, 1µL of each reconstituted HPLC fraction or the desalted crude venom was 
deposited on the MALDI target plate followed by 1 µL of the matrix. Each spectrum 
was calibrated externally using a mixture of peptides of known molecular masses in the 
same m/z range (Peptide calibration Mix 4, LaserBio Labs, Sophia-Antipolis, France). 
External calibration was performed by depositing, adjacent to each sample, 0.5 µL of 
the calibration mixture co-crystallised with 0.5 µL of the CHCA matrix. All spectra 
were acquired in reflector mode to maximize the accuracy of the mass determination. 
Spectra were collected over the m/z 500–10,000 range in positive ion mode (200 shots 
per spectrum) and were automatically calibrated using the sequence module of the 
Voyager® control software (Applied Biosystems, USA).
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2.7. Data analysis

The mass spectra were subjected to a baseline correction (0.7 correlation factor) and 
Gaussian smoothing (5-point filter width) using Data Explorer® 4.11 software. Potential 
sodium and potassium adducts were manually removed from all mass lists. Masses match-
ing within ± 1.0 Da were defined as identical peptides in this study. Identical masses in 
adjoining HPLC fractions, which were interpreted as reflecting an incomplete separation, 
were also removed. Two-dimensional scatter plots, termed “2D venom landscapes”, were 
constructed using SigmaPlot 12.0 software. All peptide masses detected in the HPLC 
fraction spectra were plotted as dot graphs with m/z values s on the y-axis and RP-HPLC 
elution time on the x-axis. A Principal Component Analysis (PCA) of the relative abun-
dance of peptides in the mass spectra was performed using PAST 3.02 software.

Results

3.1. Venom peptidome analysis

The LC-MS analysis of Odontomachus haematodus venom revealed the presence of 105 
peptides (Table 1). All of the peptides are small, falling within a narrow mass range 
of m/z 777.49 to 2978.5 (M+H+) (Fig. 2A-B). We estimated that the number of resi-
dues varied between 7 and 27 based on a theoretical estimate of MWav of 111.1254 
Da for an average amino acid (Averagine). The value is derived from the statistical 
occurrence of amino acids in proteins (Senko et al. 1995), and calculated with the for-
mula C4.9384H7.7583N1.3577S0.0417. All of the peptides eluted between 15% and 45% ACN 
(retention time: 20-50 min), with the most abundant peptides in the venom eluting 
between 35% and 45% ACN (retention time: 40-50 min) (Fig. 2C).

Table 1. Mass list of peptides (m/z) from O. haematodus venom collected in Kourou (Kou06).

777.49 800.84 809.31 822.3 877.45 888.6 890.5 932.5
937.4 945.4 950.49 973.73 987.76 1003.5 1008.4 1010.5
1016.43 1044.73 1047.5 1058.75 1064.7 1078.65 1107.79 1283.67
1127.6 1130.56 1134.57 1186.93 1194.65 1248.6 1274.79 1383.67
1316.85 1320.81 1358.8 1360.6 1370.7 1375.7 1376.78 1380.62
1421.7 1429.9 1447.8 1473.87 1497.87 1500.92 1518.84 1522.8
1694.07 1714.04 1725.12 1729.92 1731.93 1756.06 1774.1 1792.07
1803.06 1818.96 1854.07 1857.9 1863.2 1872.07 1906.24 1917.09
1933.01 1963.01 1968.14 1978.03 1979.02 2010.27 2020.02 2044.97
2048.02 2063.09 2078.04 2079.15 2086.73 2088.3 2096.12 2111.17
2117.24 2137.08 2139.08 2157.2 2245.25 2254.22 2272.47 2430.3
2448.2 2461.28 2473.3 2515.39 2590.34 2637.36 2655.33 2766.48
2784.62 2785.8 2789.47 2790.4 2802.38 2805.4 2944.5 2960.52
2978.5
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The mass analysis of the chemically reduced HPLC fractions did not show any mass 
shift between native and reduced fractions, demonstrating that Odontomachus haema-
todus venom is exclusively composed of linear peptides (i.e., devoid of disulfide bonds).

3.2. Venom peptidome variations

We collected 43 venom samples from the nine Odontomachus haematodus colonies 
monitored: 18 venoms from nurses; eight from intermediates, seven from foragers, six 
from fertilized queens and four from virgin queens. The MALDI-TOF MS peptidic 
mass fingerprinting of these 43 crude venoms resulted in the selection of the 20 charac-
teristic peptides masses (i.e., showing the most abundant signals) which constituted the 
matrix used for the principal component analysis (PCA) (m/z 1842.6, 1861.1, 1916.91, 
1962.89, 2019.91, 2044.69, 2062.27, 2086.03, 2095.89, 2117.03, 2219.16, 2245.32, 
2387.28, 2473.22, 2515.32, 2590.18, 2679.79, 2784.34, 2789.25, 2802.39).

Figure 2. Investigation of the whole Odontomachus haematodus venom peptidome by LC-MS. (A) Two-
dimensional landscape of the venom. Dots indicate peptides. (B) Box-and-whisker plot of the peptide mass 
distribution presented in the 2D venom landscape. The bottom and top ends of the box represent the first 
and third quartiles, respectively, while the line inside each box represents the median mass. The ends of the 
whiskers represent the 5-95 percentile range while the dots represent masses outside the 5-95 percentile range. 
(C) C18 RP-HPLC chromatogram of the venom. The dashed line shows the slope of the ACN gradient.
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A PCA based on the relative abundance of the selected peptides revealed that the 
first two principal components accounted for 68.1% of the variance (Fig. 3). The PCA 
showed that the venom composition was not related to caste or type of activity (Fig. 
3). Indeed, venoms from different behavioral groups showed similar patterns, indicat-
ing that polyethism and reproductive status did not affect the peptidic composition of 
the venoms (Fig. 4). Yet, some qualitative intracolonial differences were noted in the 
behavioral groups as illustrated by the nurse group (Fig. 5).

Figure 3. Ordination diagram based on the principal components of the relative abundance of peptides 
from 43 Odontomachus haematodus venoms. Solid symbols represent ant venoms from Kourou, empty 
symbols represent ant venoms from Sinnamary and grey symbols are venoms from Angoulême. The 95% 
confidence ellipses are displayed. The different behavioral groups and castes are shown by the following 
shapes: circle [nurses]; diamond [intermediates]; square [foragers]; triangle [reproductive queens] and 
inversed triangle [virgin queens].

The venoms from Angoulême, which contained two specific peptides (m/z 1861.1 
and 2062.27), were separated from those from the two other localities and differed 
only by the relative proportions of the mass 2019.91 m/z (Fig. 3).

Discussion

Ant venoms are complex cocktails of peptides which have evolved to act on multiple 
biological targets. By combining MALDI-TOF MS with chromatographic separation, 
we have shown that the Odontomachus haematodus venom peptidome is composed of 
more than 100 small and linear peptides in the 700-3000 m/z mass range. This feature 
is consistent with a previous study on the venoms of five Neotropical Odontomachus 
species (Touchard et al. 2014) as well as wasp and cone snail venoms which are usually 
comprised of peptides with fewer than 35 residues (Baptista-Saidemberg et al. 2011; 
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Figure 4. Intracolonial mass spectra variations among the different behavioral groups of colony Kou05. 
Few qualitative variations can be observed and many dominant peptides were present in all groups, par-
ticularly the shaded masses.
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Figure 5. Intercolonial mass spectra variation among the nurses [0% group]. Shaded areas highlight 
major mass variations among the different Odontomachus haematodus colonies.

Cologna et al. 2013; de Souza et al. 2004; Gomes et al. 2014; Johnson et al. 2010; Lewis 
et al. 2012; Orivel et al. 2001). In contrast, spider, scorpion and snake venoms may also 
contain larger peptides with typically from 30 to 100 amino acids (Olivera et al. 1990).

Because the presence of peptides and proteins in venoms is associated with the 
metabolic cost of venom production, we hypothesized that ants dedicated to tasks 
within the nest, typically nurses and queens, may possess less complex venoms than 
foragers, the latter using their venom to subdue prey and deter enemies and therefore 
needing venoms with a higher level of efficacy. Yet, our results show that the venom 
composition does not differ between nurses, intermediates, foragers or even queens in 
Odontomachus haematodus. By comparison, the toxicity of Neoponera commutata (Po-
nerinae) worker venoms was not related to age or task specialization, but the workers 
from different behavioral castes possess different amounts of venom in their reservoir 
(Schmidt and Overal 2009). Also, callow Harpegnathos saltator (Ponerinae) workers 
have empty venom sacks, and workers dedicated to tasks inside the nest have lower 
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amounts of venom than do older ones (Haight 2012). Therefore, we can hypothesize 
that, in most Ponerinae, nurses limit the metabolic cost of venom by producing lower 
amounts, but with the same peptidic composition as the foragers. Interestingly, these 
results contrast with the case of fire ants whose alkaloid venom composition changes 
with the size and age of the workers (Deslippe and Guo 2000; Haight and Tschin-
kel 2003). The venom composition of all fire ant queens is also presumably different 
from workers which assumes different biological effects (Eliyahu et al. 2011; Fox et al. 
2012). Also, Neoponera commutata (Ponerinae) and Pogonomyrmex spp. (Myrmicinae) 
queens produce less venom than do workers and their venom is significantly less lethal 
and paralytic than that of the workers, suggesting differences in venom composition 
(Schmidt and Overal 2009; Schmidt and Schmidt 1985).

In Odontomachus haematodus, differences in venom composition seem rather as-
sociated with geographic variations as the venom peptidic fingerprints clearly differed 
between colonies, particularly if they came from locations separated by large distances. 
Such inter-colonial variations have previously been reported for Dinoponera quadriceps 
(Ponerinae) collected from different areas in Brazil (Cologna et al. 2013). Among ani-
mal venoms, intraspecific variations related to geography are a common phenomenon 
and have been reported in snakes (Shashidharamurthy et al. 2002), cone snails (Duda 
et al. 2009), scorpions (Omran and McVean 2000), spiders (Escoubas et al. 1998) 
and both social (Dias et al. 2014) and parasitoid wasps (Poirié et al. 2014). In snakes, 
intraspecific variations have been shown to exhibit a differential venom effectiveness 
towards different prey (Casewell et al. 2013). This may be the result of allelic variations 
in the genes coding the peptides as shown for Conus ebraeus venom (Duda et al. 2009), 
increasing the venom peptidic diversity in this species. This intraspecific diversity is 
essential for natural selection and ant venom diversification.

Previous studies have demonstrated that toxins (peptide and alkaloids) in ant ven-
oms can be used as chemotaxonomic markers in order to identify species but also to 
reveal cryptic ant species (Fox et al. 2012; Touchard et al. 2014). Thus, the observed 
intraspecific variation in the venom composition of Odontomachus haematodus might 
also result from the presence of cryptic species. It would be interesting in the future 
to extend this study through further genetic analysis to assess the possible presence of 
different cryptic species.

Conclusion

The present study constitutes the first exploration of the Odontomachus haematodus 
venom peptidome, revealing that this venom is comprised of more than 100 small 
linear peptides. Also, the peptidic diversity in this species is amplified due to intraspe-
cific variations. The present results show that these venom variations are not related 
to caste or type of activity, but seem to be related to the geographical location of the 
ant colonies or to a hypothetical complex of cryptic species. It would be interesting in 
the future to analyze whether such variations can affect the effectiveness of the venom 
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in prey capture. It will also be necessary to consider such intercolonial variations in 
peptidic composition to ensure the reproducibility of further biochemical and phar-
macological studies on ant venoms.
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