The life, publications and new taxa of Qabir Argaman (Carol Nagy)

Lynn S. Kimsey1, Denis J. Brothers2

1 Department of Entomology & Nematology, University of California, Davis, CA 95616, USA 2 School of Life Sciences, University of KwaZulu-Natal (Pietermaritzburg), Private Bag X01, Scottsville, 3209 South Africa

Corresponding author: Lynn S. Kimsey (lskimsey@ucdavis.edu)

Abstract
This biography of the Hungarian/Romanian/Israeli hymenopterist Qabir Argaman (= Carol Nagy) provides a list of his publications (except for newspaper articles) and the new taxa and new replacement names he proposed. Dr. Argaman began his career in Hungary, publishing under the name Carol Nagy. He later moved to Romania and finally moved to Israel, where he assumed the name Qabir Argaman. In total, he published 84 articles on the order Hymenoptera and described 348 new taxa (2 families, 11 subfamilies, 58 tribes, 153 genera or subgenera, and 125 species or subspecies) in 15 families, as well as 1 new species of Scarabaeidae (Coleoptera).

Keywords
Carol Grosman, Károly Nagy, Hymenoptera, Scarabaeidae

Introduction
The majority of insect taxonomists tend to focus on a single family group for the majority of their careers. However, others have more diverse interests. The taxonomist Qabir Argaman (Fig. 1) worked on a wide diversity of Hymenoptera families during his career between 1965 and 2003, and he did so under different names. Early on he published under the names Carol Nagy or Károly Nagy and later under the name
Qabir Argaman. In total he published new taxa in 15 hymenopteran families, Ampulicidae, Bethylidae, Braconidae, Bradynobaenidae (as Apterogynidae), Dryinidae, Heterogynaidae, Kislevidae, Mutilillidae, Perilampidae, Plumaridae, Sclerogibbidae, Scolebythidae, Scoliidae, Sierolomorphidae and Tiphiidae (mostly as Myzinidae), as well as one new species of Scarabaeidae (Coleoptera). Because of his changes of surname, the obscure nature of some of the journals he published in and the diversity of families involved, it is difficult to find many of his publications. We have attempted to do so here, and also give a brief account of his life based on many (sometimes conflicting) sources.

Károly (Karol/Carol) György (George) Nagy was born on January 15, 1940 in Oradea, Romania (the region was transferred to Hungary later that year, but restored to Romania after the war). In the early 1960’s he attended university in Romania where he developed an interest in wasp taxonomy. In 1965 he began publishing on the Mutilillidae, Bethylidae and “heterogyne Hymenoptera” of Romania. He graduated in 1967 from Babeș-Bolyai University, in Cluj-Napoca, Romania with an MS degree in biology. He then studied under László Móczár at the University of Szeged in Hungary, where he received his PhD in 1968. Thereafter he held a position at the Marine Research Institute, in Agigea-Constantza, Romania, where he studied the taxonomy, biology and zoogeography of the Romanian wasp fauna. He obtained his DSc in 1974.
from the University “Al. I. Cuza” in Iași, his thesis on the scolioids of Romania being supervised by Mihai Constantineanu.

In 1980 Carol Nagy moved from Agigea, Romania to Israel (Menke 1980). According to a note in Sphecos (Menke 1981) he and his family left Romania with only 40 kg of baggage, which consisted mostly of clothes for their baby. He had to leave behind his entomological library and collections in Romania, lived for a time in a camp for immigrants, and started a new life in a new country with all the attendant challenges - learning a new language, trying to find employment (difficult for a wasp taxonomist in such a small country and without his literature resources), and trying to find a permanent home. During this period he briefly changed his surname from Nagy to Grosman, but was required by Israeli immigration regulations to adopt a Hebrew name (Menke 1982). He then became Qabir Argaman (ריבכ ןמגרא), and from the mid 1980’s his papers were all published under this name. In 1981 he began working as an insect taxonomist for the Israeli Ministry of Agriculture, Plant Protection Department, in Bet Dagan, working on insects of agricultural importance. However, he also continued his work on a diversity of wasp families, but suffered from shortages of basic supplies such as pins and boxes, an initial lack of a collection and constraints on field work (the threat of terrorism being a concern) (Menke 1987). He worked for the Ministry of Agriculture until his death in October 2003 at the age of 63.

Nagy’s research interests changed over the years. Between 1965 and 1968 his studies focused primarily on the Romanian fauna. In 1968 he described a new species of Mutillidae from Sudan (Nagy1968b) and this began the expansion of his research interests into other parts of the world. In the 1970’s he began working on the European bethylid and mutillid faunas and small collections of ampulicids from Africa, tiphidiids, scolebythids, South American Plumariiidae and Mongolian scoliids. There is a gap in his publications between 1980 and 1986, which is the period when he moved his family to Israel. In the remainder of the 1990’s he began new studies of Perilampidae, Sierolomorphidae and Scoliidae and continued his work on the Bethylidae, Sclerogibbidae and Tiphidiidae. He produced several papers dealing with the higher-level classification of various groups, describing many new genera and other higher taxa supposedly based on phylogenetic principles requiring naming of monophyletic groups, but never provided any cladistic or other analyses justifying his decisions. His publications were primarily limited to descriptions of new taxa and faunal lists. He never produced any taxonomic revisions. Subsequent workers have generally rejected his excessively split approach and synonymized most of his names, or else deliberately ignored them (e.g. Osten 2005). His idiosyncratic approach and involvement with such a diversity of groups means that any workers having to deal with his taxa and names should be aware of these complexities to be able to evaluate them properly.

According to an unpublished obituary provided by the Israeli Ministry of Agriculture, Argaman’s personal collection, primarily accumulated once he arrived in Israel, also included some materials dating from his early work in Hungary and Romania. According to Laibale Friedman (in Romano 2012), after Argaman’s death the collection was broken up, part being sold privately, and the remainder being
donated by his family to the Israeli Ministry of Agriculture and transferred to the Tel Aviv University Collection. For unknown reasons, Argaman apparently removed labels from some specimens, including types, leaving them without any labels at all, and making the identification of such type specimens essentially impossible. (When DJB briefly visited him in Tel Aviv in 1985, he gained the impression that Argaman was suspicious of the motives of others and jealously guarded his specimens, not being willing to let them out of his sight; this attitude probably resulted from the personal difficulties he had endured, and may explain the removal of labels.) Repositories of his types, according to his publications and information provided by collection managers, include the following:

Argaman Coll. – much of his personal collection now resides in Tel Aviv (see below), the location(s) and extent of the remainder are unknown.
Bar Ilan – Department of Life Sciences, Bar Ilan University, Ramat Gan, Israel.
Berlin – Museum für Naturkunde, Berlin, Germany.
Brussels – Royal Belgian Institute of Natural Sciences, Brussels, Belgium.
Budapest – Magyar Természettudományi Múzeum, Budapest, Hungary.
Copenhagen – Statens Naturhistoriske Museum, Copenhagen, Denmark.
Fruhstorfer Coll. – Museum für Naturkunde, Berlin, Germany.
Geneva – Muséum d’histoire naturelle de la Ville, Geneva, Switzerland.
Genoa – Museo Civico di Storia Naturale “Giacomo Doria”, Genoa, Italy.
Hamburg – Zoologisches Museum, Hamburg, Germany.
Nagy Coll. – a small part of this collection resides in Tel Aviv (see below), the location of the rest is unknown.
Nonveiller Coll. – the private collection of the late Guido Nonveiller, Zemun, Serbia, now housed in Biologiezentrumb, Oberösterreichs Landesmuseum, Linz, Austria.
Pagliano Coll. – the private collection of Guido Pagliano, Turin, Italy.
Senckenberg – Senckenberg Deutsches Entomologisches Institut, Berlin, Germany.
Tel Aviv – The Steinhardt Museum of Natural History and National Research Center, Tel Aviv University, Tel Aviv, Israel.

Lists of his theses and publications are given below (compiled from various sources, importantly using information provided by Laibale Friedman which unfortunately had all titles translated into English). A complete tabulation of new taxa described by him is given in Table 1, followed by an Appendix comprising a detailed list of his new taxa and new names, including type locality and repository for each species. If the repository has been confirmed by the date of this publication it is indicated as such. Others are yet to be confirmed. This is another problem to be resolved; it has not been possible to determine the location of most of the aculeate wasp types described by him. Some, particularly the aculeates, may still be in Romania.
Table 1. Summary of new taxa described by Nagy/Argaman; new families are indicated by asterisks (*), new replacement names are given between parentheses (), and unavailable names between square brackets [].

<table>
<thead>
<tr>
<th>Order</th>
<th>Family</th>
<th>Subfam.</th>
<th>Tribe</th>
<th>Genus/Subgen.</th>
<th>Species/Subsp.</th>
<th>Geographic Region of New Species</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coleoptera</td>
<td>Scarabaeidae</td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td>Europe</td>
</tr>
<tr>
<td></td>
<td>Ampulicidae</td>
<td>4</td>
<td>7</td>
<td>1</td>
<td>1</td>
<td>Asia</td>
</tr>
<tr>
<td></td>
<td>Brachynobaenidae</td>
<td>3</td>
<td>3</td>
<td>12</td>
<td>29</td>
<td>Africa</td>
</tr>
<tr>
<td></td>
<td>Bethylidae</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>Americas</td>
</tr>
<tr>
<td></td>
<td>Braconidae</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>Australia</td>
</tr>
<tr>
<td></td>
<td>Dryinidae</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Heterogynaidae*</td>
<td></td>
<td></td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Kislevidae*</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mutillidae</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Perilampidae</td>
<td>26</td>
<td>26 (+3)</td>
<td>5</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Plumariidae</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sclerogibbidae</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Scolebythidae</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Scoliidae</td>
<td>1</td>
<td>22</td>
<td>61 (+3)</td>
<td>3 [+3]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sierolomorphidae</td>
<td></td>
<td></td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tiphiidae</td>
<td>4</td>
<td>25</td>
<td>38</td>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>

Unpublished theses by Carol Nagy (The information on these appears in the list from Friedman; we have not been able to locate them to confirm the details or original titles, however, so several peculiarities are evident.)

Nagy CG (1967) [Contributions to the knowledge of the heterogynoid Hymenoptera from the fauna of Romania.] Master of Science Thesis, University “Babeş-Bolyai” in Cluj, 1–87. [Romanian]

Nagy CG (1968) [The Hymenoptera Proctotrupoidea in the fauna of Romania.] Doctor of Philosophy Thesis, Constantza-Szeged-Budapest. 1–70. [Romanian]

Nagy CG (1974) [Contributions to the study of Scolioidea (Hymenoptera) from the fauna of Romania, from systematical, biological, ecological and economical viewpoints.] Doctor of Science Thesis, Universitatea “Alexandru Ioan Cuza” din Iaşi, 1–300, 302 figs. [Romanian]

Publications by Carol Nagy/Qabir Argaman

This list includes all publications in books, journals or magazines for which page numbers are available, but it excludes his many (at least 117, from 1967 to 1978) “popular” contributions to newspapers or small local periodicals on a very wide range of subjects (butterflies, snakes, honey bees, birds, scientific expeditions, biological control, ants in
forests, scientific methods, oceanology, sea snakes, Antarctic exploration, obituaries, physics of the universe, linguistics, conference reports, turtle conservation, human development, psychoanalysis, archeology, environmental conservation, pagonophorans, black widow spiders, human facial expressions, yogis in ancient India, marine rescues, fossil corals, hare behavior, vitamins, human social behavior, animal suicides, *Drosophila* cultures, beach events, forest mammals, Oriental archeology, energy sources, noise pollution, ecological non-equilibria, species concepts, concept of life, scientific literature, sea gulls, sand-nesting wasps and bees, general theory of relativity, wildlife conservation, crows, biospeleology and meiobenthal faunas, autobiography, guppies, pollution, medusas, blue-green algae, shipwrecks, lunar orbits, coffee cultivation, scientific ethics, biological systems, animal intelligence, calendars, lagoons, importance of stinging wasps, pheromones, bee pollination ecology, hedgehogs, biology of cancer, dolphins, cybernetics of life, ocean plankton, hypochondria, human genetics, and dogs). The more cultural publications included below were generally authored by “Nagy G Károly”, reflected here as “Nagy KG”. Where easily available, actual dates of publication are provided, and the sequence attempts to reflect the temporal sequence of publication (primarily based on the sequence in the list mentioned above). Unfortunately, we have been unable to obtain copies of all of the entries and have therefore not been able to provide the original titles for those non-English papers we have not seen, but indicate the original language. His papers were in Romanian, German, Hungarian, French, English and Hebrew; English translations of Hungarian and Romanian titles are given in addition to the originals since these are less familiar languages to most, but only English translations of the Hebrew titles are given. Articles we have not been able to locate are indicated by an asterisk (*).

Nagy CGh (1967a) Gonatopodine noi pentru fauna României (Hymenoptera: Dryinidae) [Gonatopodines new to the fauna of Romania]. Studia Universitatis Babeş-Bolyai (Series Biologica) 1: 123–125.

Nagy KG (1968f, December) [The indefinite character of the notion of the species.] Korunk 27(12): 1859–1860. (Hungarian)*
Nagy CG (1968j) [New contributions to the knowledge of the Hymenoptera Heterogynoidea from the fauna of Romania.] Comunicări Zooligice ale Societății de Științe Biologice 2: 115–120. (Romanian?)*

Nagy KG (1970b, January) [Conservation of the nature – the central problem of our age.] Korunk 29(1): 65–66. (Hungarian)*

Nagy CG (1970h) [Comments on the taxonomy and nomenclature of the commonest European species of turtles (Testudinata).] Búvár 15 ("25"): 204. [Hungarian]*

Nagy CG (1972e) [Contributions to the knowledge of compositions, population dynamics and importance of the littoral fauna of Insects of the Romanian Black Sea coast.] Consfatuire Stiintifica Constantza, 111–112. [Romanian?]*

Nagy CGh (1973a) Contribuții la cunoașterea himenopterelor heterogine din regiunea Crișana [Contributions to the knowledge of heterogyne Hymenoptera from the district of Crisana]. Nymphaea 1: 31–34.

Nagy CG (1974a) [Contributions to the study of Scolioidea (Hymenoptera) from the fauna of Romania, from systematical, biological, ecological and economical viewpoints.] Summary of Doctor of Science Thesis, Universitatea “Alexandru Ioan Cuza” din Iași, The Publishing Center of the University, 1–23, 12 figs. [Romanian]*

Nagy CG (1975b) [Hymenoptera: Heterogynoidea, In: Monographic study of the fauna of “Iron Gate’s” area.] Edited by the Romanian Academy of Sciences, Bucharest, 181–187. [Romanian]*

Nagy CG (1976c) [The life-giving water surface. A study of the Black Sea’s Hyponeuston.] Búvár 16 [“6”]: 254–259. [Hungarian]*

Nagy CG (1977a) [An exposure about my way, beliefs, dreams and possibilities toward science during the years at the college.] Diakszo 11: 57–59. [Hungarian]*

Nagy CG (1978a) [Study on the existing discrepancy between cultural niveau of the mass media and the universal patrimony of the human knowledge.] Revista Mueveloedees 10: 1–2. (Hungarian)*

Argaman Q (1986b) [A new Maladera in Israel (Coleoptera: Scarabaeidae)]. Shappirit 4: 41–46 (Hebrew), 67–68. [English]

Argaman Q & Mendel Z (1991) [Damages to fruit trees caused by webspinners (Insecta: Embioptera).] Alon HaNotea 1: 29–30. [Hebrew].

Samish M, Argaman Q, Perelman D (1991) [Hide beetles attacking living turkeys in poultry houses.] Mesheq HaOfot 11: 70–71. [Hebrew]

Gokkes M, Friedberg A, Klein T, Argaman Q (1993a) [Intrudens leafminer, a new pest of flowers and ornamentals.] Informational Leaflet, Flower Marketing Board, Israel 2: 30. [Hebrew]*
Acknowledgements

This paper was made possible by the support and assistance of David Furth. Additional information and support was provided by Celso Azevedo, Ioana Ciumasu, Chris Darling, Laibale Friedman, Liat Gidron, Venczel Márton, George Melika, Svetlana Nikolaeva, Michael Ohl, Jenő Papp, Roberto Poggi, Zoltán Vas and George Waldren. We also thank the reviewers, Volker Lohrman and Wojciech Pulawski, for their useful suggestions. Additionally, thanks to the staff at the Steinhardt Museum of Natural History, Amnon Freidberg, Laibale Friedman, Moshe Guershon and Netta Dorchin, who are taking care of the Argaman collection.

References

Melo GAR (1999) Phylogenetic relationships and classification of the major lineages of Apoidea (Hymenoptera), with emphasis on the crabronid wasps. Scientific Papers, Natural History Museum, the University of Kansas 14: 1–55.

Appendix 1

New taxa described and new names proposed by Argaman/Nagy. It has not been possible to check the accuracy of all of Argaman/Nagy’s type designations, so the information on these is derived directly from his publications. Synonymies have been indicated where known to us; some may, however, have been missed, so this listing should not be considered authoritative.

Order Hymenoptera

Family Ampulicidae
Species:
Dolichurus alorus Nagy, 1971c: 106. Holotype male; Formosa (Taiwan): Taihorin (Nagy Coll.).
Dolichurus dromedarius Nagy, 1971c: 106. Holotype male; Formosa (Taiwan): Takao (Nagy Coll.).
Dolichurus ombrodus Nagy, 1971c: 106. Holotype male; Formosa (Taiwan): Taihorin (Nagy Coll.).
Dolichurus oxanus Nagy, 1971c: 107. Holotype male; Celebes (Sulawesi): Bua-Kraeng (Nagy Coll.).

Family Bradynobaenidae, Subfamily Apterogyninae [treated as Family Apterogynidae by Argaman]

Family Bethylidae

Species:
Afgoiogfa olmiana Argaman, 1988b: 143. Holotype male; Somalia: Afgoi (Pagliano Coll.).
Bethylus antipai Nagy, 1968h: 1033. Holotype male; Romania: Bistrița, Station de Recherches Biologiques d’Arcalia (Nagy Coll.).
Bethylus paradoxus Nagy, 1970e: 63. Holotype female; Romania: Cluj, Finațele Clujului (Nagy Coll.).
Galodoxa torquata Nagy, 1974c: 127. Holotype female; Philippines: Palawan, Mantalingajan, Pinigisan 600m (Copenhagen, confirmed).
Holepyris napocaensis Nagy, 1968g: 409. Holotype male; Romania: Cluj (Nagy Coll.).
Mesitius concii Nagy, 1972a: 8. Holotype male; Spain: ”Palma de Mallorca” (Nagy Coll.).
Mesitius foenarius Nagy, 1968a: 171. Holotype female; Romania: Cluj (Nagy Coll.).
Mesitius kiefferi Nagy, 1970g: 205. Holotype male; Algeria: Bildah-Médéah (Berlin).

Mesitius moczari Nagy, 1968a: 172. Holotype female; Afghanistan: Kandahar-Kuna (Budapest).

Mesitius orcus Nagy, 1972a: 9. Holotype male; Israel: “Palestina” (Nagy Coll.).

Mesitius viator Nagy, 1968a: 171. Holotype female; Russia: Sarepta (Berlin, confirmed).

Parascleroderma cisnora Argaman, 1988b: 147. Holotype male; West Bank: Bethlehem, Wadi-Tekoa (Argaman Coll.)

Parascleroderma fiturcata Argaman, 1988b: 150. Holotype male; Italy: Napoli, Volcano Stromboli (Argaman Coll.)

Parascleroderma hindola Argaman, 1988b: 151. Holotype male; Israel: Tell-Zakarja Junction (Argaman Coll.)

Parascleroderma norcasta Argaman, 1988b: 147. Holotype male; Italy: Liguria, Savona (Argaman Coll.)

Parascleroderma oriana Argaman, 1988b: 148. Holotype male; Israel: Hawwat Eden (Argaman Coll.)

Parascleroderma varlinda Argaman, 1988b: 148. Holotype male; Israel: Sharon Plain, Hofit, Nahal Alexander (Argaman Coll.)

Subspecies:

Mesitius africanus lugubris Nagy, 1970c: 207. Holotype female; Morocco: Tangier (Geneva).

Family Braconidae

Family Dryinidae

Species:

Bocchus scobiolae Nagy, 1967e: 334. Holotype female; Romania: Agigea, Dobroudja (Tel Aviv, confirmed).

Bocchus pedunculatus Nagy, 1969e: 323. Holotype male; Philippines: Palawan, Pinigisan, Mantalingajan (Copenhagen, confirmed).

Species:
Heterogyna protea Nagy, 1969b: 300. Holotype male; Greece: Rhodes, Ixia (Nagy Coll.?).

Species:
Kisleva ohalona Argaman, 2002: 112. Holotype subfossil head; Israel: Galilee, Locus No. 1, Ohalo II excavation (Bar Ilan).

Family Mutillidae
Species:
Dolichomutilla cribraria Nagy, 1968b: 147. Holotype female; Sudan: Khartoum (“Chartoum”) (Cluj?).
Ephuta (Arcasina) chendisa Nagy, 1970g: 88, 96. Holotype male; Surinam (Nagy Coll.).
Ephuta (Ephuta) anephuta Nagy, 1970g: 88, 92. Holotype female; Brazil: Santa Catarina, Boiteuxburgo (Hamburg).
Ephuta (Ephuta) bilunata Nagy, 1970g: 87, 89. Holotype female; Brazil: São Paulo, Estancio Mayrink (Hamburg).
Ephuta (Ephuta) buftex Nagy, 1970g: 88, 91. Holotype female; Brazil: São Paulo, Estancio Mayrink (Hamburg).
Ephuta (Ephuta) bulmaca Nagy, 1970g: 88, 93. Holotype male; Brazil: São Paulo, Estancio Mayrink (Hamburg).
Ephuta (Ephuta) elanora Nagy, 1970g: 88, 94. Holotype male; Costa Rica: San José de Costa Rica (Hamburg).

Ephuta (Ephuta) minerva Nagy, 1970g: 88, 93. Holotype male; Brazil: São Paulo, Estancio Mayrink (Hamburg).

Ephuta (Ephuta) novacula Nagy, 1970g: 88, 90. Holotype female; Brazil: São Paulo (Nagy Coll.).

Ephuta (Ephuta) olma Nagy, 1970g: 88, 92. Holotype male; Brazil: Rio Grande do Sul, Santa Cruz (Hamburg).

Ephuta (Ephuta) serapia Nagy, 1970g: 89, 95. Holotype male; Costa Rica: “Pacific-Seite” (Hamburg).

Ephuta (Ephuta) sicona Nagy, 1970g: 87, 89. Holotype female; Ecuador: Guayaquil (Nagy Coll.).

Ephuta (Ephuta) verbena Nagy, 1970g: 89, 94. Holotype male; Costa Rica: San José de Costa Rica (Hamburg).

Ephuta (Ephuta) weidneri Nagy, 1970g: 87, 89. Holotype female; Brazil: São Paulo (Hamburg).

Ephuta (Ephuta) yarasirda Nagy, 1970g: 88, 92. Holotype male; Argentina: District Mendoza (Hamburg).

Myrmilla labecua Nagy, 1968c: 68. Holotype female; Romania: Cluj (Nagy Coll.).

Myrmilla macrura Nagy, 1968c: 65. Holotype female; Romania: Cluj (Nagy Coll.).

Smicromyrme (Rhombotilla) riparia Nagy, 1966a: 115. Holotype female; Romania: Agigea (Nagy Coll.).

The life, publications and new taxa of Qabir Argaman (Carol Nagy) 163

Family Perilampidae

Species:

Family Plumariidae

Species:

Plumarius densepunctatus Nagy, 1973c: 259, 265. Holotype male; Chile: Coquimbo Prov., El Tangue (Nagy Coll.).

Family Sclerogibbidae

Species:

Family Scolebythidae

Species:
Ycaploca evansi Nagy, 1975c: 75. Holotype female; South Africa: Cape, Kirstenbosch (Nagy Coll.).

Family Scoliidae (Argaman (1996) was deliberately not taken into account by Osten (2005) in compiling his checklist of Scoliidae of the world. Elliott (2011) recognized that Osten (2005) implicitly synonymized some Argaman genera by placing their type species in other genera or subgenera, and we have followed this approach, although some of Argaman’s type species may have been misidentified since he did not examine their type material. Argaman’s (1996) numerous new names and other nomenclatural acts thus still need more critical evaluation beyond that possible here.)

Genus: *Ascolia* Argaman, 1996: 188. Type species: *Scolia flavifrons* Fabricius, 1775. Intended as an emendation of *Ascoli* Guérin-Méneville, 1838 but that name is not available since it was proposed for a hypothetical taxon (Guérin-Méneville 1838) and *Ascoli* must thus be regarded as a new genus. =Regiscolia Betrem & Bradley, 1964. Synonymy implied by Osten (2005: 37). (The name *Ascoli* has had a checkered history, being cited in synonymy of *Triscolia* Saussure, 1863 by Saussure & Sichel (1864) but being used as valid by Betrem (1926) and thereby technically being made available (ICZN 1999, Article 11.6.1). It has not been used as valid since, and a type species has never been designated. Jacot-Guillarmod et al. (1963) requested the International Commission on Zoological Nomenclature to suppress *Ascoli* as used by Guérin-Ménéeveille (1838) and Betrem (1926), but an Opinion on this has never been issued, which means that prevailing usage (which regards it as unavailable) should be maintained (ICZN 1999, Article 82.1).)

Genus: *Bagonasuna* Argaman, 1996: 186. Type species: *Trielis tartara* Morawitz, 1897. =Crioscolia Bradley, 1951. Synonymy implied by Osten (2005: 23); Morawitz (“1897”) dealt with *Trielis tartara* (Saussure, 1880) var. *mongolica* Morawitz, 1889, however (Morawitz’s paper was actually published in 1896, see Oshanin (1910)).

Genus: *Lacosia* Argaman, 1996: 199. Type species: *Scolia pygmaea* Saussure, 1858. Proposed as an emendation of *Lacosi* Guérin-Méneville, 1838, but must be considered as a new genus different in concept, since Bequaert (1926) had correctly designated the type species of *Lacosi* as *Scolia quadripunctata* Fabricius, 1775, and *S. pygmaea* was not an originally included species of *Lacosi* Guérin-Méneville. =*Discolia* Saussure, 1863. Synonymy implied by Osten (2005: 35).

Species:

Discolia kugleri Nagy, 1979. This is an unavailable manuscript name and date on several specimens in the Tel Aviv Collection, which evidently has never been published; it was given as a synonym of *Scolia fallax* Eversmann, 1849 by Osten (2002: 347).]

Family Sierolomorphidae
Species:
Sierolomorpha isis Nagy, 1971b: 247. Holotype female; Samarkand (Nagy Coll.).

Family Tippiididae [many treated under Family Myzinidae by Nagy/Argaman, but generally considered as subfamily Myzininae Ashmead, 1899]

Subgenus: *Sierocolpa* Nagy, 1967c: 177. Type species: *Tiphia minuta* van der Linden, 1827

Species:

Cabaraxa compedita Nagy, 1974d: 104. Holotype male; Ethiopia: Dire-Dana (belongs in Budapest, but not deposited there).

Dermasothes ponderopardalis Nagy, 1970d: 191. Holotype male; South Africa: Cape Prov., Willowmore (Nagy Coll.).

Jurja limpida Argaman, 1994b: 96. Holotype male; Yemen: Wadi Zabid (belongs in Budapest, but not deposited there).

Ludita andromeda Nagy, 1967c: 198. Holotype female; Romania: Babadag (Nagy Coll.).

Ludita ramispinosa Nagy, 1967c: 203. Holotype male; Romania: Caraorman, Rayon Tulcea (Nagy Coll.).

Methoca [sic] sisala Nagy, 1968e: 82. Holotype male; Romania: near Oradea, Bâile Felix forest (Nagy Coll.).

Tiphia (Tiphia) hexar Nagy, 1967c: 187. Holotype female; Romania: Oituz (Nagy Coll.).

Tiphia (Tiphia) copidosoma Nagy, 1967c: 189. Holotype female; Romania: Bâile Victoria (Nagy Coll.).

Tiphia (Tiphia) iracunda Nagy, 1967c: 182. Holotype male; Romania: Agigea (Nagy Coll.).

Warayoa citreosigna Argaman, 1994b: 91. Holotype male = paratype of Braun-someria quadraticeps Turner, 1912; South Africa: “Cape Colony”, Willowmore (London) [although Argaman considered this a replacement name, it must rather be treated as the proposal of a new species since he retained Turner’s name for the female; although Boni Bartalucci (2011) designated the female specimen as the lectotype, this is invalid since Turner (1912) had specified “the female is the type”, effectively designating it as the holotype]. = Braun-someria quadraticeps Turner, 1912. Synonymized by Boni Bartalucci 2011.

Weerpaga udomanca Argaman, 1994b: 98. Holotype female; Cameroon: Guetale (Nonveiller Coll.).

Order Coleoptera

Family Scarabaeidae

Species: