First record of the parasitoid Gonatopus flavipes Olmi, 1984 (Hymenoptera, Dryinidae) in Brazil's Amazon forest

André Luis Martins¹, Diones Krinski²,³

¹ Programa de Pós-Graduação em Entomologia, Departamento de Zoologia, Laboratório de Biologia Comparada de Hymenoptera, Universidade Federal do Paraná, CEP 81531-980, Curitiba, PR, Brazil ² Programa de Pós-Graduação em Zoologia, Departamento de Zoologia, Laboratório de Controle Integrado de Insetos, Universidade Federal do Paraná, CEP 81351-980 Curitiba, PR, Brazil ³ Departamento de Ciências Biológicas, Universidade do Estado de Mato Grosso, CEP 78300-000 Tangará da Serra, MT, Brazil

Corresponding author: André L. Martins (andrelmartinsbiol@hotmail.com)

Academic editor: Michael Ohl | Received 18 April 2016 | Accepted 8 May 2016 | Published 27 June 2016

http://zoobank.org/3CBFB7D1-2735-47A3-8B87-BDCE8D03642F

Abstract
This study reports for the first time the occurrence of Gonatopus flavipes Olmi, 1984 in Pará State, Brazil. Specimens were collected on upland rice crops of Cambará variety in Novo Progresso (7°07’45.71”S 55°23’21.13”W). A sampling of insects with pitfall traps was conducted between November 2010 and March 2011. Specimens of G. flavipes were identified, illustrated and deposited in the Entomological Collection of the Department of Zoology, Federal University of Paraná, Curitiba, Brazil (DZUP/UFPR). This record indicates that rice crops may represent important habitats for this species.

Keywords
Chrysidoidea, Gonatopodinae, Gonatopus group seven, pitfall traps
Introduction

Gonatopus Ljung, 1810 is one of the 11 genera belonging to the subfamily Gonatopodinae (Hymenoptera, Dryinidae). With about 440 worldwide described species, among which 120 known in the Neotropics and 32 in Brazil (Olmi and Virla 2014; Martins et al. 2015a, b), this genus is divided into 12 groups (nine registered for the Neotropics and five for Brazil) (Olmi and Virla 2014). Little is known about the biology of parasitoids belonging to the genus Gonatopus. The few studies report the association of the genus with some families of leafhoppers and planthoppers (Hemiptera, Auchenorrhyncha): Acaloniidae, Caliscelidae, Cicadellidae, Cixiidae, Delphacidae, Dictyopharidae, Flatidae, Issidae, Lophopidae, Meenoplidae and Tropiduchidae (Guglielmino et al. 2013; Olmi and Virla 2014).

Gonatopus flavipes Olmi, 1984, broadly distributed from Mexico to Argentina, belongs to group seven, which is the largest group of Gonatopus with exactly 61 described species. Both sexes of G. flavipes are known (Olmi and Virla 2014). The following species of Cicadellidae (Hemiptera, Auchenorrhyncha) are reported as hosts: Mendozellus asunctia Cheng in Argentina; Dalbulus maidis (DeLong and Wolcott) in Piaui, Brazil; Dalbulus elimatus (Ball), Planicephalus flavicosta (Stål) and Graminella comata (Ball) in Mexico (Guglielmino and Olmi 1997, 2006; Meneses et al. 2013; Moya-Raygoza 1990, 1993; Olmi and Virla 2014; Virla 1992).

The Companhia Nacional de Abastecimento do Brasil (CONAB 2016) records rice cultivation in Pará State since 1976–1977, mainly in the North, with recent planting of upland rice in the Southwest (less than 10 years) (Azevedo 2009; Krinski 2014; Lopes et al. 2004; Silva and Magalhães 1981). For this reason, a few entomological studies have been conducted on rice cultivars of this region. This study reports for the first time the occurrence of G. flavipes in upland rice crop in Southwestern region of Pará State (Brazil).

Materials and methods

A sampling of insects was conducted with pitfall traps on upland rice crops (Cambará variety), in Novo Progresso, State of Pará, Brazil (7°07′45.71″S 55°23′21.13″W) (Fig. 1), between November 2010 and March 2011. The sampling effort included 16 collecting points visited weekly, covering 400 meters in four transects of 100 meters, distant 25 meters from each other.

The collected specimens of Gonatopus were sent to the Laboratory of Comparative Hymenoptera Biology at Federal University of Paraná (UFPR), where they were identified to species level using a stereo-microscope LEICA M125 coupled to digital camera LEICA DFC295. The images were processed by Zerene Stacker software (1.04 version build). Digital scanning electronmicroscope (SEM) photographs were taken with a TESCAN VEGA3 LMU in low vacum mode. The figures were prepared using Adobe Photoshop (version 11.0). Specimens are deposited in the Entomological Collection of the Department of Zoology, Federal University of Paraná (DZUP).
Results and discussion

Gonatopus flavipes Olmi, 1984

Note. Only two female specimens were collected (Figs 2–5). They present the following diagnostic features:

Diagnosis. Completely yellow testaceous except petiole black and metasoma partly brown (Fig. 2). Pronotum shiny, unsculptured, crossed by strong transverse furrow. Scutum shiny, unsculptured, laterally with two pointed apophyses (Fig. 3). Meso-metapleural suture obsolete (Fig. 2). Head with frontal line complete; occipital carina absent; OL (distance between the inner edges of a lateral ocellus and the median ocellus)/POL (distance between the inner edges of the lateral ocelli) = 1.5/1.0 (Fig. 4). Enlarged claw with one small subapical tooth and one row of six peg-like hairs. Segment 5 of protarsus with two rows of 22 + 12 lamellae (Fig. 5). Tibial spurs 1/0/1.

Material examined. Two females: Brazil, PA, Novo Progresso, Florentino Farm, Upland rice crop, 7°08’41”S 55°22’43”W, 09.ii.2011, D. Krisni, Pitfall traps (DZUP).

Gonatopus flavipes was recorded for Argentina, Bolivia, Brazil (Piauí, São Paulo and Santa Catarina States), Costa Rica, Ecuador, Guadeloupe, Jamaica and Mexico (Olmi and Virla 2014) (Fig. 1). In addition we record for the first time the presence of this species from Pará State, Brazil, in upland rice crop.

Therefore, considering the economic importance of rice crops in Brazil, we recommend careful monitoring in rice areas and studies on the biology, morphology and ecology of G. flavipes in different rice crops.
In addition, more studies are needed to assess the population fluctuation of this parasitoid in different rice varieties, mainly to investigate if this species can be used in the future for the biological control of Auchenorrhyncha (Guglielmino 2002; Mita et al. 2012). In fact, research out of Brazil have reported the occurrence of *Gonatopus* species associated with important pests of rice (Mita and Pham 2014).

Acknowledgements

Authors acknowledge the farmers of Fazenda Florentino, Marlete Florentino, Eurides Florentino (*in memoriam*), and Nadir de Lima Florentino (*in memoriam*) for allowing this research on their property. We also thank the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for fellowships provided to D. Krinski (CNPq – Proc.: 141243/2012-0 and CAPES – Proc.: 939980) and A. L. Martins (CNPq – Proc.: 142415/2015-4). Many thanks to the Center of Electron Microscopy of Universidade Federal do Paraná (UFPR) for the SEM photomicrographs. Many thanks to Dr. Massimo Olmi (Tropical Entomology Research Center, Viterbo, Italy) for help in the identification of species and for the review of the manuscript.
First record of the parasitoid Gonatopus flavipes Olmi, 1984...

References

